摘要:已知数列{an}满足:a1=.a2=.an+1=2an-an-1(n≥2.n∈N*).数列{bn}满足b1<0,3bn-bn-1=n(n≥2.n∈N*).数列{bn}的前n项和为Sn. (1)求数列{an}的通项an, (2)求证:数列{bn-an}为等比数列. 解:(1)证明∵2an=an+1+an-1(n≥2.n∈N*). ∴{an}是等差数列. 又∵a1=.a2=.∴an=+(n-1)·=. (2)证明:∵bn=bn-1+(n≥2.n∈N*). ∴bn+1-an+1=bn+-=bn- =(bn-)=(bn-an). 又∵b1-a1=b1-≠0. ∴{bn-an}是以b1-为首项.以为公比的等比数列.

网址:http://m.1010jiajiao.com/timu_id_3971265[举报]

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网