摘要:已知函数f(x)=(x2-3x+3)·ex的定义域为[-2.t](t>-2).设f(-2)=m.f(t)=n. (1)试确定t的取值范围.使得函数f(x)在[-2.t]上为单调函数, (2)求证:n>m, 解:(1)因为f′(x)=(x2-3x+3)·ex+(2x-3)·ex=x(x-1)·ex. 由f′(x)>0⇒x>1或x<0,由f′(x)<0⇒0<x<1. 所以f(x)在上单调递增.在(0,1)上单调递减. 欲使f(x)在[-2.t]上为单调函数.则-2<t≤0. (2)因为f(x)在上单调递增.在(0,1)上单调递减.所以f(x)在x=1处取得极小值f(1)=e. 又f(-2)=<e.所以f(x)仅在x=-2处取得[-2.t]上的最小值f(-2). 从而当t>-2时.f(-2)<f(t).即m<n.

网址:http://m.1010jiajiao.com/timu_id_3971248[举报]

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网