摘要:若复数z满足 (i是虚数单位).则z= . 答案 1+i
网址:http://m.1010jiajiao.com/timu_id_3969225[举报]
(2008•上海模拟)若一条曲线既是轴对称图形,又是中心对称图形,则称这条曲线为“二重对称曲线”,给出下列四条曲线:(1) x2+
=1 (2) x2=y+1(3) y=
cos(2x+
) (4) y=kx+b (k,b∈R)
其中是“二重对称曲线”的有
查看习题详情和答案>>
| y2 |
| 4 |
| 3 |
| π |
| 6 |
其中是“二重对称曲线”的有
(1),(3)
(1),(3)
.(2008•上海一模)在统计学中,我们学习过方差的概念,其计算公式为
=
[(x1-μ)2+(x2-μ)2+…+(xn-μ)2],并且知道,其中μ=
(x1+x2+…+xn)为x1、x2、…、xn的平均值.
类似地,现定义“绝对差”的概念如下:设有n个实数x1、x2、…、xn,称函数g(x)=|x-x1|+|x-x2|+…+|x-xn|为此n个实数的绝对差.
(1)设有函数g(x)=|x+1|+|x-1|+|x-2|,试问当x为何值时,函数g(x)取到最小值,并求最小值;
(2)设有函数g(x)=|x-x1|+|x-x2|+…+|x-x2|,(x∈R,x1<x2<…<xn∈R),
试问:当x为何值时,函数g(x)取到最小值,并求最小值;
(3)若对各项绝对值前的系数进行变化,试求函数f(x)=3|x+3|+2|x-1|-4|x-5|(x∈R)的最值;
(4)受(3)的启发,试对(2)作一个推广,给出“加权绝对差”的定义,并讨论该函数的最值(写出结果即可).
查看习题详情和答案>>
| σ | 2 |
| 1 |
| N |
| 1 |
| N |
类似地,现定义“绝对差”的概念如下:设有n个实数x1、x2、…、xn,称函数g(x)=|x-x1|+|x-x2|+…+|x-xn|为此n个实数的绝对差.
(1)设有函数g(x)=|x+1|+|x-1|+|x-2|,试问当x为何值时,函数g(x)取到最小值,并求最小值;
(2)设有函数g(x)=|x-x1|+|x-x2|+…+|x-x2|,(x∈R,x1<x2<…<xn∈R),
试问:当x为何值时,函数g(x)取到最小值,并求最小值;
(3)若对各项绝对值前的系数进行变化,试求函数f(x)=3|x+3|+2|x-1|-4|x-5|(x∈R)的最值;
(4)受(3)的启发,试对(2)作一个推广,给出“加权绝对差”的定义,并讨论该函数的最值(写出结果即可).
(2008•上海一模)观察数列:
①1,-1,1,-1,…;
②正整数依次被4除所得余数构成的数列1,2,3,0,1,2,3,0,…;
③an=tan
,n=1,2,3,…
(1)对以上这些数列所共有的周期特征,请你类比周期函数的定义,为这类数列下一个周期数列的定义:对于数列{an},如果
(2)若数列{an}满足an+2=an+1-an,n∈N*,Sn为{an}的前n项和,且S2=2008,S3=2010,证明{an}为周期数列,并求S2008;
(3)若数列{an}的首项a1=p,p∈[0,
),且an+1=2an(1-an),n∈N*,判断数列{an}是否为周期数列,并证明你的结论.
查看习题详情和答案>>
①1,-1,1,-1,…;
②正整数依次被4除所得余数构成的数列1,2,3,0,1,2,3,0,…;
③an=tan
| nπ |
| 3 |
(1)对以上这些数列所共有的周期特征,请你类比周期函数的定义,为这类数列下一个周期数列的定义:对于数列{an},如果
存在正整数T
存在正整数T
,对于一切正整数n都满足an+T=an
an+T=an
成立,则称数列{an}是以T为周期的周期数列;(2)若数列{an}满足an+2=an+1-an,n∈N*,Sn为{an}的前n项和,且S2=2008,S3=2010,证明{an}为周期数列,并求S2008;
(3)若数列{an}的首项a1=p,p∈[0,
| 1 |
| 2 |