摘要:18.已知f(x)=,(x2). 及其单调区间,=3++,求其最小值.
网址:http://m.1010jiajiao.com/timu_id_3941747[举报]
已知函数f(x)=x-1-
(x>0)及h(x)=x2-1+lnx(x>0)
(I)判断函数h(x)在(0,+∞)上的单调性,并求出h(1)的值;
(II)求函数f(x)的单调区间及其在定义域上的最小值;
(III)是否存在实数m,n,满足1≤m<n,使得函数f(x)在[m,n]的值域也有[m,n]?并说明理由. 查看习题详情和答案>>
| lnx | x |
(I)判断函数h(x)在(0,+∞)上的单调性,并求出h(1)的值;
(II)求函数f(x)的单调区间及其在定义域上的最小值;
(III)是否存在实数m,n,满足1≤m<n,使得函数f(x)在[m,n]的值域也有[m,n]?并说明理由. 查看习题详情和答案>>
已知函数f(x)=
x2-3x+(a-1)lnx,g(x)=ax,h(x)=f(x)-g(x)+3x,其中a∈R且a>1.
(I)求函数f(x)的导函数f′(x)的最小值;
(II)当a=3时,求函数h(x)的单调区间及极值;
(III)若对任意的x1,x2∈(0,+∞),x1≠x2,函数h(x)满足
,求实数a的取值范围.
查看习题详情和答案>>
| 1 |
| 2 |
(I)求函数f(x)的导函数f′(x)的最小值;
(II)当a=3时,求函数h(x)的单调区间及极值;
(III)若对任意的x1,x2∈(0,+∞),x1≠x2,函数h(x)满足
| h(x1)-h(x2) |
| x1-x2 |
已知函数f(x)=
x2-3x+(a-1)lnx,g(x)=ax,h(x)=f(x)-g(x)+3x,其中a∈R且a>1.
(I)求函数f(x)的导函数f′(x)的最小值;
(II)当a=3时,求函数h(x0的单调区间及极值;
(III)若对任意的x1,x2∈(0,+∞),x1≠x2,函数h(x)满足
>-1,求实数a的取值范围.
查看习题详情和答案>>
| 1 |
| 2 |
(I)求函数f(x)的导函数f′(x)的最小值;
(II)当a=3时,求函数h(x0的单调区间及极值;
(III)若对任意的x1,x2∈(0,+∞),x1≠x2,函数h(x)满足
| h(x1)-h(x2) |
| x1-x2 |