摘要:9.已知函数的定义域为R.值域为.下列函数中与值域一定相同的是 ①,②,③,④, ⑤,⑥
网址:http://m.1010jiajiao.com/timu_id_3936558[举报]
已知函数f(x)=lg|x-1|,下列命题中所有正确的序号是
(1)函数f(x)的定义域和值域均为R;
(2)函数f(x)在(-∞,1)单调递减,在(1,+∞)单调递增;
(3)函数f(x)的图象关于y轴对称;
(4)函数f(x+1)为偶函数;
(5)若f(a)>0则a<0或a>2.
查看习题详情和答案>>
(2)(4)(5)
(2)(4)(5)
.(1)函数f(x)的定义域和值域均为R;
(2)函数f(x)在(-∞,1)单调递减,在(1,+∞)单调递增;
(3)函数f(x)的图象关于y轴对称;
(4)函数f(x+1)为偶函数;
(5)若f(a)>0则a<0或a>2.
已知下表为定义域为R的函数f(x)=ax3+cx+d若干自变量取值及其对应函数值,为便于研究,相关函数值非整数值时,取值精确到0.01.
根据表中数据解答下列问题:
(1)函数y=f(x)在区间[0.55,0.6]上是否存在零点,写出判断并说明理由;
(2)证明:函数y=f(x)在区间(-∞,-0.35]单调递减.
查看习题详情和答案>>
| x | 3.27 | 1.57 | -0.61 | -0.59 | 0.26 | 0.42 | -0.35 | -0.56 | 4.25 | |
| y | -101.63 | -10.04 | 0.07 | 0.03 | 0.21 | 0.20 | -0.22 | -0.03 | -226.05 |
(1)函数y=f(x)在区间[0.55,0.6]上是否存在零点,写出判断并说明理由;
(2)证明:函数y=f(x)在区间(-∞,-0.35]单调递减.
查看习题详情和答案>>
下列结论:①已知命题p:?x∈R,tanx=1;命题q:?x∈R,x2-x+1>0.则命题“p∧?q”是假命题;②函数y=
的最小值为
且它的图象关于y轴对称;③函数f(x)=lnx+2x-6在定义域上有且只有一个零点.其中正确命题的序号为
.(把你认为正确的命题序号都填上)
查看习题详情和答案>>
| |x| |
| x2+1 |
| 1 |
| 2 |