摘要: 解:(Ⅰ)当a=1时.对函数求导数.得 -2分 令 列表讨论的变化情况: 3 + 0 - 0 + 极大值6 极小值-26 所以.的极大值是.极小值是 ------6分 (Ⅱ)的图像是一条开口向上的抛物线.关于x=a对称. 若上是增函数.从而 上的最小值是最大值是 由于是有 ----8分 由 ---10分 所以 若a>1,则不恒成立. 所以使恒成立的a的取值范围是 ------12分
网址:http://m.1010jiajiao.com/timu_id_3931037[举报]
已知函数
,其中实数a,b是常数.
(Ⅰ)已知a∈{0,1,2},b∈{0,1,2},求事件A:“f(1)≥0”发生的概率;
(Ⅱ)若f(x)是R上的奇函数,g(a)是f(x)在区间[-1,1]上的最小值,求当|a|≥1时g(a)的解析式;
(Ⅲ)记y=f(x)的导函数为f′(x),则当a=1时,对任意x1∈[0,2],总存在x2∈[0,2]使得f(x1)=f′(x2),求实数b的取值范围.
查看习题详情和答案>>
已知函数f(x)=
x3-ax+b,其中实数a,b是常数.
(Ⅰ)已知a∈{0,1,2},b∈{0,1,2},求事件A:“f(1)≥0”发生的概率;
(Ⅱ)若f(x)是R上的奇函数,g(a)是f(x)在区间[-1,1]上的最小值,求当|a|≥1时g(a)的解析式;
(Ⅲ)记y=f(x)的导函数为f′(x),则当a=1时,对任意x1∈[0,2],总存在x2∈[0,2]使得f(x1)=f′(x2),求实数b的取值范围.
查看习题详情和答案>>
| 1 |
| 3 |
(Ⅰ)已知a∈{0,1,2},b∈{0,1,2},求事件A:“f(1)≥0”发生的概率;
(Ⅱ)若f(x)是R上的奇函数,g(a)是f(x)在区间[-1,1]上的最小值,求当|a|≥1时g(a)的解析式;
(Ⅲ)记y=f(x)的导函数为f′(x),则当a=1时,对任意x1∈[0,2],总存在x2∈[0,2]使得f(x1)=f′(x2),求实数b的取值范围.
已知函数
,其中实数a,b是常数.
(Ⅰ)已知a∈{0,1,2},b∈{0,1,2},求事件A:“f(1)≥0”发生的概率;
(Ⅱ)若f(x)是R上的奇函数,g(a)是f(x)在区间[-1,1]上的最小值,求当|a|≥1时g(a)的解析式;
(Ⅲ)记y=f(x)的导函数为f′(x),则当a=1时,对任意x1∈[0,2],总存在x2∈[0,2]使得f(x1)=f′(x2),求实数b的取值范围.
查看习题详情和答案>>
(Ⅰ)已知a∈{0,1,2},b∈{0,1,2},求事件A:“f(1)≥0”发生的概率;
(Ⅱ)若f(x)是R上的奇函数,g(a)是f(x)在区间[-1,1]上的最小值,求当|a|≥1时g(a)的解析式;
(Ⅲ)记y=f(x)的导函数为f′(x),则当a=1时,对任意x1∈[0,2],总存在x2∈[0,2]使得f(x1)=f′(x2),求实数b的取值范围.
查看习题详情和答案>>