网址:http://m.1010jiajiao.com/timu3_id_4468988[举报]
已知
是等差数列,其前n项和为Sn,
是等比数列,且
,
.
(Ⅰ)求数列
与
的通项公式;
(Ⅱ)记
,
,证明
(
).
【解析】(1)设等差数列
的公差为d,等比数列
的公比为q.
由
,得
,
,
.
由条件,得方程组
,解得![]()
所以
,
,
.
(2)证明:(方法一)
由(1)得
①
②
由②-①得
![]()
![]()
![]()
而![]()
故
,![]()
(方法二:数学归纳法)
① 当n=1时,
,
,故等式成立.
② 假设当n=k时等式成立,即
,则当n=k+1时,有:
![]()
![]()
![]()
![]()
![]()
![]()
即
,因此n=k+1时等式也成立
由①和②,可知对任意
,
成立.
查看习题详情和答案>>
在等差数列{an}中,a1=3,其前n项和为Sn,等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+ S2=12,
.(Ⅰ)求an 与bn;(Ⅱ)设数列{cn}满足
,求{cn}的前n项和Tn.
【解析】本试题主要是考查了等比数列的通项公式和求和的运用。第一问中,利用等比数列{bn}的各项均为正数,b1=1,公比为q,且b2+ S2=12,
,可得
,解得q=3或q=-4(舍),d=3.得到通项公式故an=3+3(n-1)=3n, bn=3 n-1. 第二问中,
,由第一问中知道
,然后利用裂项求和得到Tn.
解: (Ⅰ) 设:{an}的公差为d,
因为
解得q=3或q=-4(舍),d=3.
故an=3+3(n-1)=3n, bn=3 n-1. ………6分
(Ⅱ)因为
……………8分
![]()
查看习题详情和答案>>
| |||||||||||
| |||||||||||