摘要: 函数在与上单调性相同.在与上单调性相反.当为何值时.取得极值?并判断出这些极值点的横坐标与2.4的大小关系,(3)的图象上是否存在点使f(x)在M处的切线斜率为?
网址:http://m.1010jiajiao.com/timu3_id_4468391[举报]
(本小题满分14分)如图,两县城A和B相距20km,现计划在两县城外以AB为直径的半圆弧
上选择一点C建造垃圾处理厂,其对城市的影响度与所选地点到城市的的距离有关,对城A和城B的总影响度为城A与城B的影响度之和,记C点到城A的距离为
km,建在C处的垃圾处理厂对城A和城B的总影响度为
,统计调查表明:垃圾处理厂对城A的影响度与所选地点到城A的距离的平方成反比,比例系数为4;对城B的影响度与所选地点到城B的距离的平方成反比,比例系数为k ,当垃圾处理厂建在
的中点时,对城A和城B的总影响度为0.065.
(I)将
表示成
的函数;
(II)讨论(1)中函数的单调性,并判断弧
上是否存在一点,使建在此处的垃圾处理厂对城A和城B的总影响度最小?若存在,求出该点到城A的距离;若不存在,说明理由。
查看习题详情和答案>>
(本小题满分14分)
已知函数
对任意实数
均有
,其中常数
为负数,且
在区间
上有表达式
.
(1)求
,
的值;
(2)写出
在
上的表达式,并讨论函数
在
上的单调性;
(3)求出
在
上的最小值与最大值,并求出相应的自变量的取值.
查看习题详情和答案>>
(本小题满分14分)
已知函数
对任意实数
均有
,其中常数
为负数,且
在区间
上有表达式
.
(1)求
,
的值;
(2)写出
在
上的表达式,并讨论函数
在
上的单调性;
(3)求出
在
上的最小值与最大值,并求出相应的自变量的取值.