摘要:(三)性质:方程:, 焦点: .通径, 准线: , 焦半径:过焦点弦长 注意:(1)几何特征:焦点到顶点的距离=,焦点到准线的距离=,通径长= 顶点是焦点向准线所作垂线段中点. (2)抛物线上的动点可设为P或P
网址:http://m.1010jiajiao.com/timu3_id_4467938[举报]
| x2 |
| a2 |
| y2 |
| b2 |
(1)已知椭圆C1:
| x2 |
| 4 |
| x2 |
| 16 |
| y2 |
| 4 |
(2)写出与椭圆C1相似且半短轴长为b的椭圆Cb的方程,并列举相似椭圆之间的三种性质(不需证明);
(3)已知直线l:y=x+1,在椭圆Cb上是否存在两点M、N关于直线l对称,若存在,则求出函数f(b)=|MN|的解析式.
| 3 |
| 2 |
(1)若已知下列所给的三个方程中有一个是等轴双曲线C的方程:①x2-y2=
| 27 |
| 4 |
| 9 |
| 2 |
(2)现要在等轴双曲线C上选一处P建一座码头,向A(3,3)、B(9,6)两地转运货物.经测算,从P到A、从P到B修建公路的费用都是每单位长度a万元,则码头应建在何处,才能使修建两条公路的总费用最低?
(3)如图,函数y=
| ||
| 3 |
| 1 |
| x |
| OM |
| AB |
(1)试用k表示点A、点B的坐标;
(2)求动点M的轨迹方程F(x,y)=0;
(3)以下给出曲线C的五个方面的性质,请你选择其中的三个方面进行研究,并说明理由(若你研究的方面多于三个,我们将只对试卷解答中的前三项予以评分).
①对称性;(2分)
②顶点坐标(定义:曲线与其对称轴的交点称为该曲线的顶点);(2分)
③图形范围;(2分)
④渐近线;(3分)
⑤对方程F(x,y)=0,当y≥0时,函数y=f(x)的单调性.(3分)
| OM |
| OB |
| OM |
| AB |
(1)试用点M的坐标x,y表示y0,x1,y1;
(2)求动点M的轨迹方程F(x,y)=0;
(3)以下给出曲线C的五个方面的性质,请你选择其中的三个方面进行研究,并说明理由.(若你研究的方面多于三个,我们将只对试卷解答中的前三项予以评分)
①对称性;
②顶点坐标(定义:曲线与其对称轴的交点称为该曲线的顶点);
③图形范围;
④渐近线;
⑤对方程F(x,y)=0,当y≥0时,函数y=f(x)的单调性. 查看习题详情和答案>>