摘要:4.若a.b.c同时是一个等比数列和一个等差数列的第k.m.n项.求证 ab-cbc-aca-b=1.
网址:http://m.1010jiajiao.com/timu3_id_4460871[举报]
|
(1)可考虑利用算法来求am,bm的值,其中m为给定的数据(m≥2,m∈N).右图算法中,虚线框中所缺的流程,可以为下面A、B、C、D中的
ACD
ACD
(请填出全部答案)
A、
C、
(2)我们可证明当a≠b,5a≠4b时,{an-bn}及{5an-4bn}均为等比数列,请按答纸题要求,完成一个问题证明,并填空.
证明:{an-bn}是等比数列,过程如下:an-bn=(-2an-1+4bn-1)+(5an-1-7bn-1)=3an-1-3bn-1=3(an-1-bn-1)
所以{an-bn}是以a1-b1=a-b≠0为首项,以
3
3
为公比的等比数列;同理{5an-4bn}是以5a1-4b1=5a-4b≠0为首项,以
2
2
为公比的等比数列(3)若将an,bn写成列向量形式,则存在矩阵A,使
|
|
|
|
|
①写出矩阵A=
|
|
P=
,Q=
|
|
P=
,Q=
; ③矩阵Cn中的唯一元素是
|
|
2n+2-4
2n+2-4
.计算过程如下:
6、已知a1,a2,a3为一等差数列,b1,b2,b3为一等比数列,
且这6个数都为实数,则下面四个结论:
①a1<a2与a2>a3可能同时成立;
②b1<b2与b2>b3可能同时成立;
③若a1+a2<0,则a2+a3<0;
④若b1•b2<0,则b2•b3<0其中正确的是( )
且这6个数都为实数,则下面四个结论:
①a1<a2与a2>a3可能同时成立;
②b1<b2与b2>b3可能同时成立;
③若a1+a2<0,则a2+a3<0;
④若b1•b2<0,则b2•b3<0其中正确的是( )
查看习题详情和答案>>
已知
为一等差数列,
为一等比数列,且这6个数都为实数,则下面四个结论:
①
与
可能同时成立;
②
与
可能同时成立;
③若
,则
;
④若
,则
其中正确的是
A.①③ B.②④ C.①④ D.②③
查看习题详情和答案>>