摘要:9.已知f (x)=x+1.g (x)=2x+1.数列{an}满足:a1=1.an+1=则数列{an}的前2007项的和为A.5×22008-2008 B.3×22007-5020 C.6×22006-5020 D.6×21003-5020 [解析]∵a2n+2=a2n+1+1=(2a2n+1)+1=2a2n+2.∴a2n+2+2==2(a2n+2). ∴数列{a2n+2}是以2为公比.以a2=a1+1=2为首项的等比数列. ∴a2n+2=2×2 n-1.∴a2n=2 n-2. 又a2n+a2n+1= a2n+2a2n+1=3a2n+1.∴数列{an}的前2007项的和为 a1+( a2+ a3)+ ( a4+ a5)+ ( a6+ a7)+ -+ ( a2006+ a2007) = a1+(3a2+1)+ (3a4+1)+ (3a6+1)+ -+ (3a2006+1) = 1++ (3×22-5)+ (3×23-5)+ -+ (3×21003-5) = 1++ (3×22-5)+ (3×23-5)+ -+ (3×21003-5) = 3×(2+22+23+-+21003+1-5×1003 =6×(21003-1)+1-5×1003=6×21003- 5020 .故选D.

网址:http://m.1010jiajiao.com/timu3_id_4459137[举报]

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网