摘要:方程=0所表示的图形是 A一条直线及一个圆 B两个点 C一条射线及一个圆 D两条射线及一个圆
网址:http://m.1010jiajiao.com/timu3_id_4453125[举报]
| x2 |
| 2b2 |
| y2 |
| b2 |
| 1 |
| 8 |
(1)求点G和点F1的坐标(用b表示);
(2)求满足条件的椭圆方程和抛物线方程;
(3)设A,B分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点P,使得△ABP为直角三角形?若存在,指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标). 查看习题详情和答案>>
如图所示,在平面直角坐标系xOy上放置一个边长为1的正方形PABC,此正方形PABC沿x轴滚动(向左或向右均可),滚动开始时,点P位于原点处,设顶点P(x,y)的纵坐标与横坐标的函数关系是y=f(x),x∈R,该函数相邻两个零点之间的距离为m.
(1)写出m的值并求出当0≤x≤m时,点P运动路径的长度l;
(2)写出函数f(x),x∈[4k-2,4k+2],k∈Z的表达式;研究该函数的性质并填写下面表格:
(3)试讨论方程f(x)=a|x|在区间[-8,8]上根的个数及相应实数a的取值范围.
查看习题详情和答案>>
(1)写出m的值并求出当0≤x≤m时,点P运动路径的长度l;
(2)写出函数f(x),x∈[4k-2,4k+2],k∈Z的表达式;研究该函数的性质并填写下面表格:
| 函数性质 | 结 论 | |
| 奇偶性 | ______ | |
| 单调性 | 递增区间 | ______ |
| 递减区间 | ______ | |
| 零点 | ______ | |
(1)写出m的值并求出当0≤x≤m时,点P运动路径的长度l;
(2)写出函数f(x),x∈[4k-2,4k+2],k∈Z的表达式;研究该函数的性质并填写下面表格:
| 函数性质 | 结 论 | |
| 奇偶性 | 偶函数 偶函数 | |
| 单调性 | 递增区间 | [4k,4k+2],k∈z [4k,4k+2],k∈z |
| 递减区间 | [4k-2,4k],k∈z [4k-2,4k],k∈z | |
| 零点 | x=4k,k∈z x=4k,k∈z | |