(14分)

 

(1)开普勒行星运动第三定律指出:行星绕太阳运动的椭圆轨道的半长轴a的三次方与它的公转周期T的二次方成正比,即k是一个对所有行星都相同的常量。将行星绕太阳的运动按圆周运动处理,请你推导出太阳系中该常量k的表达式。已知引力常量为G,太阳的质量为M

(2)开普勒定律不仅适用于太阳系,它对一切具有中心天体的引力系统(如地月系统)都成立。经测定月地距离为3.84×108m,月球绕地球运动的周期为2.36×106S,试计算地球的质M。(G=6.67×10-11Nm2/kg2,结果保留一位有效数字)

【解析】:(1)因行星绕太阳作匀速圆周运动,于是轨道的半长轴a即为轨道半径r。根据万有引力定律和牛顿第二定律有

                            ①

    于是有                           ②

即                                ③

(2)在月地系统中,设月球绕地球运动的轨道半径为R,周期为T,由②式可得

                                ④

解得     M=6×1024kg                         ⑤

M=5×1024kg也算对)

23.【题文】(16分)

     如图所示,在以坐标原点O为圆心、半径为R的半圆形区域内,有相互垂直的匀强电场和匀强磁场,磁感应强度为B,磁场方向垂直于xOy平面向里。一带正电的粒子(不计重力)从O点沿y轴正方向以某一速度射入,带电粒子恰好做匀速直线运动,经t0时间从P点射出。

(1)求电场强度的大小和方向。

(2)若仅撤去磁场,带电粒子仍从O点以相同的速度射入,经时间恰从半圆形区域的边界射出。求粒子运动加速度的大小。

(3)若仅撤去电场,带电粒子仍从O点射入,且速度为原来的4倍,求粒子在磁场中运动的时间。

 

 0  44898  44906  44912  44916  44922  44924  44928  44934  44936  44942  44948  44952  44954  44958  44964  44966  44972  44976  44978  44982  44984  44988  44990  44992  44993  44994  44996  44997  44998  45000  45002  45006  45008  45012  45014  45018  45024  45026  45032  45036  45038  45042  45048  45054  45056  45062  45066  45068  45074  45078  45084  45092  176998 

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网