(08四川卷)24.(19分)如图,一半径为R的光滑绝缘半球面开口向下,固定在水平面上。整个空间存在匀强磁场,磁感应强度方向竖直向下。一电荷量为q(q>0)、质量为m的小球P在球面上做水平的匀速圆周运动,圆心为O’。球心O到该圆周上任一点的连线与竖直方向的夹角为θ(0<θ<。为了使小球能够在该圆周上运动,求磁感应强度大小的最小值及小球P相应的速率。重力加速度为g。
(08重庆卷)25.(20分)题25题为一种质谱仪工作原理示意图.在以O为圆心,OH为对称轴,夹角为2α的扇形区域内分布着方向垂直于纸面的匀强磁场.对称于OH轴的C和D分别是离子发射点和收集点.CM垂直磁场左边界于M,且OM=d.现有一正离子束以小发散角(纸面内)从C射出,这些离子在CM方向上的分速度均为v0.若该离子束中比荷为的离子都能汇聚到D,试求:
(1)磁感应强度的大小和方向(提示:可考虑沿CM方向运动的离子为研究对象);
(2)离子沿与CM成θ角的直线CN进入磁场,其轨道半径和在磁场中的运动时间;
(3)线段CM的长度.
(08广东卷)4.1930年劳伦斯制成了世界上第一台回旋加速器,其原理如图所示,这台加速器由两个铜质D形合D1、D2构成,其间留有空隙,下列说法正确的是
A.离子由加速器的中心附近进入加速器
B.离子由加速器的边缘进入加速器
C.离子从磁场中获得能量
D.离子从电场中获得能量
04(北京卷)
实验条件,使该电子通过电场区域时仅在ox轴
上方运动。在通过电场区域过程中,该电子沿y
方向的分速度v,随位置坐标x变化的示意图是( )
04(全国卷)8 一直升飞机停在南半球的地磁极上空。该处地磁场的方向竖直向上,磁感应强度为B。直升飞机螺旋桨叶片的长度为l,螺旋桨转动的频率为f,顺着地磁场的方向看螺旋桨,螺旋桨按顺时针方向转动。螺旋桨叶片的近轴端为a,远轴端为b,如图所示。如果忽略a到转轴中心线的距离,用ε表示每个叶片中的感应电动势,则
A.ε=πfl2B,且a点电势低于b点电势
B.ε=2πfl2B,且a点电势低于b点电势
C.ε=πfl2B,且a点电势高于b点电势
D.ε=2πfl2B,且a点电势高于b点电势
07宁夏理综 1 在半径为R的半圆形区域中有一匀强磁场,磁场的方向垂直于纸面,磁感应强度为B。一质量为m,带有电量q的粒子以一定的速度沿垂直于半圆直径AD方向经P点(AP=d)射入磁场(不计重力影响)。
⑴如果粒子恰好从A点射出磁场,求入射粒子的速度。
⑵如果粒子经纸面内Q点从磁场中射出,出射方向与半圆在Q点切线方向的夹角为φ(如图)。求入射粒子的速度。
06(四川卷). 2如图所示,在足够大的空间范围内,同时存在着竖直向上的匀强电场和垂直纸面向里的水平匀强磁场,磁感应强度B=1.57T.小球1带正电,其电量与质量之比q1/m1=4 C/kg,所受重力与电场力的大小相等;小球2不带电,静止放置于固定的水平悬空支架上。小球向右以v0=23.59 m/s的水平速度与小球2正碰,碰后经过0.75 s再次相碰。设碰撞前后两小球带电情况不发生改变,且始终保持在同一竖直平面内。
(取g=10 m/s2)
问(1)电场强度E的大小是多少?
(2)两小球的质量之比是多少?
04(广东卷)15 .(17分)如图,真空室内存在匀强磁场,磁场方向垂直于纸面向里,磁感应强度的大小
B=0.60T,磁场内有一块平面感光板ab,板面与磁场方向平行,在距ab的距离
处,有一个点状的放射源S,它向各个方向发射粒子,粒子的速度都是
,已知粒子的电荷
与质量之比,现只
考虑在图纸平面中运动的粒子,求
ab上被粒子打中的区域的长度。
如图(a)所示,平行金属板A和B间的距离为d,现在A、B板上加上如图(b)所示的方波形电压,t=0时A板比B板的电势高,电压的正向值为U0,反向值也为U0,现有由质量为m的带正电且电荷量为q的粒子组成的粒子束,从AB的中点O以平行于金属板方向OO/的速度射入,所有粒子在AB间的飞行时间均为T,不计重力影响。
(1)求粒子打出电场时位置离O/点的距离范围
(2)求粒子飞出电场时的速度
(3)若要使打出电场的粒子经某一圆形区域的匀强磁场偏转后都能通过圆形磁场边界的一个点处,而便于再收集,则磁场区域的最小直径和相应的磁感应强度是多大?
如图所示,有界匀强磁场的磁感应强度为B,方向垂直纸面向里,MN为其左边界,磁场中放置一半径为R的圆柱形金属圆筒,圆心O到MN的距离OO1=2R,圆筒轴线与磁场平行.圆筒用导线通过一个电阻r0接地,最初金属圆筒不带电.现有范围足够大的平行电子束以速度v0从很远处沿垂直于左边界MN向右射入磁场区,已知电子质量为m,电量为e.
(1)若电子初速度满足,则在最初圆筒上没有带电时,能够打到圆筒上的电子对应MN边界上O1两侧的范围是多大?
(2)当圆筒上电量达到相对稳定时,测量得到通过电阻r0的电流恒为I,忽略运动电子间的相互作用,求此时金属圆筒的电势φ和电子到达圆筒时速度v(取无穷远处或大地电势为零).
(3)在(2)的情况下,求金属圆筒的发热功率.