【题目】在如图所示的电路中,闭合开关S,在将滑动变阻器的滑片P向下移动的过程中,以下说法正确的是:( )
A. 电压表和电流表的示数都增大
B. 电源的总功率变大
C. 灯L1变亮,电压表的示数增大
D. 灯L2变亮,电容器的带电量增加
【题目】如图,电路中定值电阻阻值R大于电源内阻阻值r。将滑动变阻器滑片向下滑动,理想电压表示数变化量的绝对值分别为,理想电流表示数为I、变化量的绝对值为,则( )
A. 、、都不变
B. 、、都不变,且最大
C.
D. 当滑动变阻器接入电路中的电阻等于R+r时,R消耗的电功率最大
【题目】“研究共点力的合成”的实验情况如图甲所示,其中A为固定橡皮筋的图钉,O为橡皮筋与细绳的结点,OB和OC为细绳,图乙是在白纸上根据实验结果画出的图示.
(1)图乙中的F与F′两力中,方向一定沿AO方向的是 .
(2)本实验采用的科学方法是
A.理想实验法 B.等效替代法
C.控制变量法 D.建立物理模型法
(3)实验中可减小误差的措施有
A.两个分力F1、F2的大小要越大越好
B.两个分力F1、F2间夹角应越大越好
C.拉橡皮筋时,弹簧秤、橡皮条、细绳应贴近木板且与木板平面平行
D.AO间距离要适当,将橡皮筋拉至结点O时,拉力要适当大些.
【题目】在如图所示的电路中,闭合开关,将滑动变阻器的滑片向右移动一段距离,待电路稳定后,与滑片移动前比较
A. 灯泡L变亮
B. 电容器C上的电荷量不变
C. 电源消耗的总功率变小
D. 电阻R0两端电压变大
【题目】如图所示,图线1表示的导体的电阻为R1,图线2表示的导体的电阻为R2,则下列说法正确的是()
A. R1:R2=1:3
B. 把R1拉长到原来的3倍长后电阻等于R2
C. 将R1与R2串联后接于电源上,则功率之比P1:P2=1:3
D. 将R1与R2并联后接于电源上,则电流比I1:I2=1:3
【题目】如图所示,质量mB=3.5 kg的物体B通过一轻弹簧固连在地面上,弹簧的劲度系数k=100 N/m.一轻绳一端与物体B连接,绕过无摩擦的两个轻质小定滑轮O1、O2后,另一端与套在光滑直杆顶端的、质量mA=1.6 kg的小球A连接.已知直杆固定,杆长L为0.8 m,且与水平面的夹角θ=37°.初始时使小球A静止不动,与A端相连的绳子保持水平,此时绳子中的张力F为45 N.已知AO1=0.5 m,重力加速度取g=10 m/s2,绳子不可伸长.现将小球A从静止释放.
(1) 求在释放小球A之前弹簧的形变量.
(2) 若直线CO1与杆垂直,求物体A运动到C点的过程中绳子拉力对物体A所做的功.
(3) 求小球A运动到底端D点时的速度.
【题目】中国自行研制,具有完全自主知识产权的“神舟号”飞船,目前已经达到或优于国际第三代载人飞船技术,其发射过程简化如下:飞船在酒泉卫星发射中心发射,由长征运载火箭送入近地点为A、远地点为B的椭圆轨道上,A点距地面的高度为h,飞船飞行五周后进行变轨,进入预定圆轨道,如图所示,设飞船在预定圆轨道上飞行n圈所用时间为t,若已知地球表面重力加速度为g,地球半径为R,求:
(1)地球的平均密度是多少;
(2)飞船经过椭圆轨道近地点A时的加速度大小;
(3)椭圆轨道远地点B距地面的高度。
【题目】如图所示,在直角坐标系中y轴和x=L之间有沿y轴负向的匀强电场,电场强度大小为E,在电场的右侧以O1(3L,0)点为圆心,L为半径的网形区域内有垂直于坐标平面向外的匀强磁场,磁感应强度大小为B,在y轴上A(0,L)点处沿z轴正方向射出一质量为m,带电量为q的带正电的粒子,结果粒子经电场偏转后,沿半径方向射入磁场,并恰好不再进入电场,求:
(1)粒子的初速度v0大小;
(2)匀强磁场的磁感应强度B大小.
【题目】如图所示,真空中竖直条形区域I存在垂直纸面向外的匀强磁场,条形区域II存在水平向左的匀强电场,磁场和电场宽度均为L且足够长,图中虚线是磁场与电场的分界线,M、N为涂有荧光物质的竖直板,带电粒子打在M、N板上被吸附时就会发出荧光。现有一束带正电粒子从A处以速度v连续不断地射入磁场,入射方向与M板成60°夹角且与纸面平行,已知带正粒子的质量为m,电荷量为q,不计粒子重力和相互作用力。求:
(1)若带正电粒子垂直打在N板上,I区磁场的磁感应强度;
(2)在第(1)问中,调节电场强度的大小,N板上的亮斑刚好消失时的场强E;
(3)若区域II的电场强度,要使M板出现亮斑,I区磁场的最小磁感应强度。
【题目】如图甲所示,竖直挡板MN左侧空间有方向竖直向上的匀强电场和垂直纸面向里的水平匀强磁场,电场和磁场的范围足够大,电场强度E=40N/C,磁感应强度B随时间t变化的关系图象如图乙所示(磁场垂直纸面向里为正方向)。t=0时刻,一质量m=8×10﹣4kg、电荷量q=+2×10﹣4C的微粒在O点具有竖直向下的速度v=0.12m/s,O’是挡板MN上一点,直线OO'与挡板MN垂直,取重力加速度g=10m/s2.求:
(1)若微粒的运动时间大于一个B变化的周期,在图上画出(0﹣20π)s内微粒的运动轨迹
(2)微粒再次经过直线OO'时与O点的距离;
(3)微粒在运动过程中离开直线OO’的最大高度;
(4)水平移动挡板使微粒能垂直射到挡板上,挡板与O点间的距离应满足的条件。