题目内容
(1)滑块C从传送带右端滑出时的速度;
(2)滑块B、C用细绳相连时弹簧的弹性势能EP.
分析:本题主要考查以下知识点:碰撞中的动量守恒,碰撞中的能量守恒以及物体在传送带上的减速运动,涉及平抛的基本知识.
(1)碰撞前后系统的动量保持不变,这是动量守恒定律
(2)弹性碰撞中在满足动量守恒的同时还满足机械能守恒及碰撞中的能量保持不变;本题中AB碰撞后在弹簧伸开的过程中同时满足动量守恒和机械能守恒.
(1)碰撞前后系统的动量保持不变,这是动量守恒定律
(2)弹性碰撞中在满足动量守恒的同时还满足机械能守恒及碰撞中的能量保持不变;本题中AB碰撞后在弹簧伸开的过程中同时满足动量守恒和机械能守恒.
解答:解:(1)滑块C滑上传送带后做匀加速运动,
设滑块C从滑上传送带到速度达到传送带的速度v所用的时间为t,
加速度大小为a,在时间t内滑块C的位移为x.
由牛顿第二定律得:μmg=ma,
由运动学公式得:v=vC+at,x=vct+
at2,
代入数据可得:x=1.25m,∵x=1.25m<L,
∴滑块C在传送带上先加速,达到传送带的速度v后随传送带匀速运动,
并从右端滑出,则滑块C从传送带右端滑出时的速度为v=3.0m/s.
(2)设A、B碰撞后的速度为v1,A、B与C分离时的速度为v2,
由动量守恒定律:mAv0=(mA+mB)v1,
(mA+mB)v1=(mA+mB)v2+mCvC,
AB碰撞后,弹簧伸开的过程系统能量守恒:
∴EP+
(mA+mB)v12+(mA+mB)v22+
mCvC2,
代入数据可解得:EP=1.0J;
答:(1)滑块C从传送带右端滑出时的速度为3m/s;
(2)滑块B、C用细绳相连时弹簧的弹性势能为1.0J.
设滑块C从滑上传送带到速度达到传送带的速度v所用的时间为t,
加速度大小为a,在时间t内滑块C的位移为x.
由牛顿第二定律得:μmg=ma,
由运动学公式得:v=vC+at,x=vct+
| 1 |
| 2 |
代入数据可得:x=1.25m,∵x=1.25m<L,
∴滑块C在传送带上先加速,达到传送带的速度v后随传送带匀速运动,
并从右端滑出,则滑块C从传送带右端滑出时的速度为v=3.0m/s.
(2)设A、B碰撞后的速度为v1,A、B与C分离时的速度为v2,
由动量守恒定律:mAv0=(mA+mB)v1,
(mA+mB)v1=(mA+mB)v2+mCvC,
AB碰撞后,弹簧伸开的过程系统能量守恒:
∴EP+
| 1 |
| 2 |
| 1 |
| 2 |
代入数据可解得:EP=1.0J;
答:(1)滑块C从传送带右端滑出时的速度为3m/s;
(2)滑块B、C用细绳相连时弹簧的弹性势能为1.0J.
点评:本题着重考查碰撞中的动量守恒和能量守恒问题,同时借助传送带考查到物体在恒定摩擦力作用下的匀减速运动,还需用到平抛的基本知识,这是力学中的一道知识点比较多的综合题,学生在所涉及的知识点中若存在相关知识缺陷,则拿全分的机率将大大减小.
练习册系列答案
相关题目