题目内容
如图所示,在竖直边界线O1O2左侧空间存在一竖直向下的匀强电场.电场强度E=100 N/C,电场区域内有一固定的粗糙绝缘斜面AB,其倾角为30°,A点距水平地面的高度为h=4 m.BC段为一粗糙绝缘平面,其长度为L=
m.斜面AB与水平面BC由一段极短的光滑小圆弧连接(图中未标出),竖直边界线O1O2右侧区域固定一半径为R=0.5 m的半圆形光滑绝缘轨道,CD为半圆形光滑绝缘轨道的直径,C、D两点紧贴竖直边界线O1O2,位于电场区域的外部(忽略电场对O1O2右侧空间的影响).现将一个质量为m=1 kg,带电荷量为q=0.1 C的带正电的小球(可视为质点)在A点由静止释放,且该小球与斜面AB和水平面BC间的动摩擦因数均为μ=
(g取10 m/s2)求:
![]()
(1)小球到达C点时的速度大小;
(2)小球到达D点时所受轨道的压力大小;
(3)小球落地点距离C点的水平距离.
某同学在“研究匀变速直线运动”的实验中,用打点计时器记录了被小车拖动的纸带的运动情况,在纸带上确定出A、B、C、D、E、F、G共7个计数点,其相邻两点间的距离如图甲所示,每两个相邻的计数点之间的时间间隔均为0.10s。
![]()
(1)试根据纸带上各个计数点间的距离,计算打下B、C、D、E、F五个点时小车的瞬时速度,请将D点的速度值填在下面的表格内(保留到小数点后两位);
计数点序号 | B | C | D | E | F |
计数点对应的时刻t/s | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 |
通过计数点时小车的速度v/m•s﹣1 | 0.50 | 0.58 |
| 0.74 | 0.82 |
(2)以A点为计时零点,将B、C、D、E、F各个时刻的瞬时速度标在如图乙所示的坐标纸上,并画出小车的瞬时速度v随时间t变化的关系图线;
(3)根据第(2)问中画出的v﹣t图线,求出小车运动的加速度大小a= m/s2(保留三位有效数字)。