ÌâÄ¿ÄÚÈÝ
£¨1£©Ï¸ÉþµÚÒ»´Î±»Àֱ˲¼äÉþ¶ÔA³åÁ¿µÄ´óС£»
£¨2£©AµÚÒ»´ÎÉÏÉý¹ý³Ì¾àÀëµØÃæµÄ×î´ó¸ß¶È£»
£¨3£©AÔ˶¯µÄ×Ü·³Ì£®
·ÖÎö£º£¨1£©¸ù¾Ý×ÔÓÉÂäÌåÔ˶¯µÄ¹æÂÉ¿ÉÒÔÇóµÃϽµ¸ß¶ÈΪlʱµÄËÙ¶È£¬ÔÙ¸ù¾Ý¶¯Á¿¶¨Àí¿ÉÒÔÇóµÃ¶ÔAµÄ³åÁ¿µÄ´óС£»
£¨2£©¸ù¾ÝA¡¢B×é³ÉµÄϵͳ»úеÄÜÊØºã£¬¿ÉÒÔÇóµÃAÉÏÉýµÄ×î´óµÄ¸ß¶È£»
£¨3£©¸ù¾ÝABÖ®¼äÿ´ÎµÄÏ໥×÷Óã¬ÕÒ³öÏ໥×÷ÓõĹæÂÉ£¬×ܽá¹éÄÉ¿ÉÒÔÇóµÃAÔ˶¯µÄ×Ü·³Ì£®
£¨2£©¸ù¾ÝA¡¢B×é³ÉµÄϵͳ»úеÄÜÊØºã£¬¿ÉÒÔÇóµÃAÉÏÉýµÄ×î´óµÄ¸ß¶È£»
£¨3£©¸ù¾ÝABÖ®¼äÿ´ÎµÄÏ໥×÷Óã¬ÕÒ³öÏ໥×÷ÓõĹæÂÉ£¬×ܽá¹éÄÉ¿ÉÒÔÇóµÃAÔ˶¯µÄ×Ü·³Ì£®
½â´ð£º½â£º
£¨1£©B×ö×ÔÓÉÂäÌ壬Ͻµ¸ß¶ÈΪlʱµÄËÙ¶ÈΪv0£¬¸ù¾Ývt2-v02=2axµÃv0=
´ËʱϸÉþ±»ÀÖ±£¬A¡¢BËٶȵĴóСÁ¢¼´±ä³Év1£¬ÉèÉþ×Ó¶ÔA¡¢BµÄ³åÁ¿´óСΪI£¬¸ù¾Ý¶¯Á¿¶¨ÀíµÃ¶ÔB£º-I=mv1-mv0¶ÔA£ºI=2mv1½âµÃϸÉþµÚÒ»´Î±»Àֱ˲¼äÉþ¶ÔA³åÁ¿µÄ´óСI=
£¨2£©ÓÉ£¨1£©¿ÉµÃAµÚÒ»´ÎÀ뿪µØÃæÊ±ËٶȵĴóСv1=
=
´ÓAÀ뿪µØÃæµ½AÔٴλص½µØÃæµÄ¹ý³ÌÖУ¬A¡¢B×é³ÉµÄϵͳ»úеÄÜÊØºã£¬¼ÙÉèAµÚÒ»´ÎÉÏÉý¹ý³Ì¾àÀëµØÃæµÄ×î´ó¸ß¶ÈΪx1£¬Ôò
(m+2m)
+mgl=2mgx1+mg(l-x1)½âµÃ x1=
=
£¨3£©´ÓAÀ뿪µØÃæµ½AÔٴλص½µØÃæµÄ¹ý³ÌÖУ¬A¡¢B×é³ÉµÄϵͳ»úеÄÜÊØºã£¬ËùÒÔ£¬AÔٴλص½µØÃæÊ±ËٶȵĴóСÒÀȻΪv1£¬¼´BÔٴλص½¾àÀëµØÃæ¸ß¶ÈΪlʱËٶȵĴóСҲΪv1£®´ËºóB×öÊúÖ±ÉÏÅ×Ô˶¯£¬Â仨¾àÀëµØÃæ¸ß¶ÈΪlʱËٶȵĴóС»¹ÊÇv1£®
¸ù¾Ý£¨1£©Çó½â¿ÉµÃAµÚ¶þ´ÎÀ뿪µØÃæÊ±ËٶȵĴóСv2=
ͬÀí¿ÉÇóAµÚ¶þ´ÎÀ뿪µØÃæÉÏÉýµÄ×î´ó¸ß¶ÈΪx2=
=
?
¡
AµÚn´ÎÀ뿪µØÃæÊ±ËٶȵĴóСvn=
=
ͬÀí¿ÉÇóAµÚn´ÎÀ뿪µØÃæÉÏÉýµÄ×î´ó¸ß¶ÈΪxn=
=
?
ÓÉÓÚAµÄÖÊÁ¿´óÓÚBµÄÖÊÁ¿£¬A×îÖջᾲֹÔÚµØÃæÉÏ£®
ËùÒÔAÔ˶¯µÄ×Ü·³Ìx=2£¨x1+x2+¡+xn+¡£©=
(1+
+¡+
+¡)=
l£®
£¨1£©B×ö×ÔÓÉÂäÌ壬Ͻµ¸ß¶ÈΪlʱµÄËÙ¶ÈΪv0£¬¸ù¾Ývt2-v02=2axµÃv0=
| 2gl |
´ËʱϸÉþ±»ÀÖ±£¬A¡¢BËٶȵĴóСÁ¢¼´±ä³Év1£¬ÉèÉþ×Ó¶ÔA¡¢BµÄ³åÁ¿´óСΪI£¬¸ù¾Ý¶¯Á¿¶¨ÀíµÃ¶ÔB£º-I=mv1-mv0¶ÔA£ºI=2mv1½âµÃϸÉþµÚÒ»´Î±»Àֱ˲¼äÉþ¶ÔA³åÁ¿µÄ´óСI=
2m
| ||
| 3 |
£¨2£©ÓÉ£¨1£©¿ÉµÃAµÚÒ»´ÎÀ뿪µØÃæÊ±ËٶȵĴóСv1=
| v0 |
| 3 |
| ||
| 3 |
´ÓAÀ뿪µØÃæµ½AÔٴλص½µØÃæµÄ¹ý³ÌÖУ¬A¡¢B×é³ÉµÄϵͳ»úеÄÜÊØºã£¬¼ÙÉèAµÚÒ»´ÎÉÏÉý¹ý³Ì¾àÀëµØÃæµÄ×î´ó¸ß¶ÈΪx1£¬Ôò
| 1 |
| 2 |
| v | 2 1 |
3
| ||
| 2g |
| l |
| 3 |
£¨3£©´ÓAÀ뿪µØÃæµ½AÔٴλص½µØÃæµÄ¹ý³ÌÖУ¬A¡¢B×é³ÉµÄϵͳ»úеÄÜÊØºã£¬ËùÒÔ£¬AÔٴλص½µØÃæÊ±ËٶȵĴóСÒÀȻΪv1£¬¼´BÔٴλص½¾àÀëµØÃæ¸ß¶ÈΪlʱËٶȵĴóСҲΪv1£®´ËºóB×öÊúÖ±ÉÏÅ×Ô˶¯£¬Â仨¾àÀëµØÃæ¸ß¶ÈΪlʱËٶȵĴóС»¹ÊÇv1£®
¸ù¾Ý£¨1£©Çó½â¿ÉµÃAµÚ¶þ´ÎÀ뿪µØÃæÊ±ËٶȵĴóСv2=
| v1 |
| 3 |
ͬÀí¿ÉÇóAµÚ¶þ´ÎÀ뿪µØÃæÉÏÉýµÄ×î´ó¸ß¶ÈΪx2=
3
| ||
| 2g |
| 1 |
| 32 |
3
| ||
| 2g |
¡
AµÚn´ÎÀ뿪µØÃæÊ±ËٶȵĴóСvn=
| vn-1 |
| 3 |
| v1 |
| 3n-1 |
ͬÀí¿ÉÇóAµÚn´ÎÀ뿪µØÃæÉÏÉýµÄ×î´ó¸ß¶ÈΪxn=
3
| ||
| 2g |
| 1 |
| 32(n-1) |
3
| ||
| 2g |
ÓÉÓÚAµÄÖÊÁ¿´óÓÚBµÄÖÊÁ¿£¬A×îÖջᾲֹÔÚµØÃæÉÏ£®
ËùÒÔAÔ˶¯µÄ×Ü·³Ìx=2£¨x1+x2+¡+xn+¡£©=
3
| ||
| g |
| 1 |
| 32 |
| 1 |
| 32(n-1) |
| 3 |
| 4 |
µãÆÀ£º¸ù¾ÝABÖ®¼äµÄµÚÒ»´ÎµÄÏ໥×÷Ó㬷ÖÎö×ܽáÖ®ºóµÄÿ´ÎÏ໥×÷ÓõĹæÂÉ£¬¸ù¾ÝABÏ໥×÷ÓõĹæÂÉÀ´½â´ð±¾Ì⣬ÕÒ³ö¹æÂÉÊǽâ¾ö±¾ÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
| A¡¢aµÄµçºÉÁ¿Ò»¶¨´óÓÚbµÄµçºÉÁ¿ | B¡¢bµÄÖÊÁ¿Ò»¶¨´óÓÚaµÄÖÊÁ¿ | C¡¢aµÄ±ÈºÉÒ»¶¨´óÓÚbµÄ±ÈºÉ | D¡¢bµÄ±ÈºÉÒ»¶¨´óÓÚaµÄ±ÈºÉ |