ÌâÄ¿ÄÚÈÝ
6£®£¨1£©´ËÔª¼þµÄC¡¢C¡äÁ½¸ö²àÃæÖУ¬C¡äÃæµçÊÆ¸ß£®
£¨2£©ÔڴŸÐӦǿ¶ÈÒ»¶¨Ê±£¬CC¡äÁ½¸ö²àÃæµÄµçÊÆ²îÓëÆäÖеĵçÁ÷¹ØÏµÊdzÉÕý±È£¨Ìî³ÉÕý±È»ò³É·´±È£©£®
£¨3£©´ÅÇ¿¼ÆÊÇÀûÓûô¶ûЧӦÀ´²âÁ¿´Å¸ÐӦǿ¶ÈBµÄÒÇÆ÷£®Æä²âÁ¿·½·¨Îª£º½«µ¼Ìå·ÅÔÚÔÈÇ¿´Å³¡Ö®ÖУ¬ÓúÁ°²±í²âÁ¿Í¨ÒÔµçÁ÷I£¬ÓúÁ·ü±í²âÁ¿C¡¢C¡ä¼äµÄµçѹU£¬¾Í¿É²âµÃB£®ÈôÒÑÖªÆä»ô¶ûϵÊýΪ£ºk=$\frac{1}{ned}$=10V/A•T£¬²âµÃU=0.6mV£¬I=3mA£®¸ÃÔª¼þËùÔÚ´¦µÄ´Å¸ÐӦǿ¶ÈBµÄ´óСÊÇ£º0.02T£®
·ÖÎö £¨1£©½ðÊôµ¼ÌåÖÐÒÆ¶¯µÄÊÇ×ÔÓɵç×Ó£¬¸ù¾Ý×óÊÖ¶¨ÔòÅж¨µç×ӵį«×ª·½Ïò£¬´Ó¶øµÃ³öÔª¼þµÄCC¡äÁ½¸ö²àÃæµÄµçÊÆµÄ¸ßµÍ£®
£¨2£©×îÖÕµç×ÓÔÚÂåÂ××ÈÁ¦ºÍµç³¡Á¦µÄ×÷ÓÃÏ´¦ÓÚÆ½ºâ£¬¸ù¾Ýƽºâ£¬½áºÏµçÁ÷µÄ΢¹Û±í´ïʽ£¬Ö¤Ã÷³öÁ½¸ö²àÃæµÄµçÊÆ²îÓëÆäÖеĵçÁ÷³ÉÕý±È£®
£¨3£©¸ù¾ÝÖ¤Ã÷³öµÄµçÊÆ²îºÍµçÁ÷µÄ¹ØÏµÇó³ö´Å¸ÐӦǿ¶ÈµÄ´óС£®
½â´ð ½â£º£¨1£©µçÁ÷ÑØxÖáÕý·½Ïò£¬Öªµç×ÓÁ÷¶¯µÄ·½ÏòÑØxÖḺ·½Ïò£¬¸ù¾Ý×óÊÖ¶¨Ôò£¬Öªµç×ÓÏòC²àÃæÆ«×ª£¬ËùÒÔC²àÃæµÃµ½µç×Ó´ø¸ºµç£¬C¡ä²àÃæÊ§È¥µç×Ó´øÕýµç£®¹ÊC'ÃæµçÊÆ½Ï¸ß£®
£¨2£©µ±µç×ÓÊÜÁ¦Æ½ºâʱÓУºe$\frac{U}{b}$=evB£®µÃU=vBb£®
µçÁ÷µÄ΢¹Û±í´ïʽI=nevS=nevbd£®ËùÒÔv=$\frac{I}{nebd}$£®
U=$\frac{I}{nebd}$¡ÁBb=$\frac{B}{ned}$I£®
ÖªÁ½¸ö²àÃæµÄµçÊÆ²îÓëÆäÖеĵçÁ÷³ÉÕý±È£®
£¨3£©UCC¡ä=$\frac{B}{ned}$I£¬
ÔòB=$\frac{nedU{\;}_{CC¡ä}}{I}$=$\frac{{U}_{CC¡ä}}{KI}$=$\frac{0.6}{10¡Á3}$T=0.02T
¹Ê¸ÃÔª¼þËùÔÚ´¦µÄ´Å¸ÐӦǿ¶ÈBµÄ´óСΪ0.02T
¹Ê´ð°¸Îª£ºC¡ä£»³ÉÕý±È£»0.02T£®
µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÕÆÎÕ×óÊÖ¶¨ÔòÅж¨ÂåÂ××ÈÁ¦µÄ·½Ïò£¬ÒÔ¼°ÖªµÀ×îÖÕµç×ÓÊܵ糡Á¦ºÍÂåÂ××ÈÁ¦´¦ÓÚÆ½ºâ£®
| A£® | ÎïÌåÓÉÓÚÔ˶¯¶ø¾ßÓеÄÄܽж¯ÄÜ | B£® | ¶¯ÄÜÖ»ÓдóС£¬Ã»Óз½Ïò£¬ÊDZêÁ¿ | ||
| C£® | ¶¯ÄÜÓëÎïÌåµÄÖÊÁ¿ºÍËÙ¶ÈÓÐ¹Ø | D£® | ¶¯Äܵĵ¥Î»Êǽ¹¶ú |
| A£® | ÎïÌåÔ˶¯¹ý³ÌÖÐÿ1 sÄÚµÄËÙ¶ÈÔöÁ¿¶¼ÊÇÒ»ÑùµÄ | |
| B£® | ÔÚͬһ¸ß¶ÈÅ׳öµÄÎïÌ壬³õËÙ¶ÈÔ½´óÔòÔÚ¿ÕÖÐÔ˶¯µÄʱ¼äÔ½³¤ | |
| C£® | ´ÓÅ׳öµã¿ªÊ¼£¬Á¬ÐøÏàµÈµÄʱ¼äÄÚÊúÖ±·½ÏòÎ»ÒÆ·ÖÁ¿Ö®±ÈΪ1£º4£º9£º¡ | |
| D£® | ³õËÙ¶ÈÔ½´ó£¬ÎïÌåµÄˮƽÉä³ÌÒ»¶¨Ô½´ó |
| A£® | ºãΪT1=2¦Ð$\sqrt{\frac{L+\frac{d}{2}}{g}}$£¬ÒòΪµ¥°ÚÖÜÆÚÓë°ÚÇòÖÊÁ¿ÎÞ¹Ø | |
| B£® | ¿Ï¶¨¸Ä±ä£¬ÒòΪµ¥°ÚµÄ°Ú³¤·¢ÉúÁ˱仯 | |
| C£® | T1ÏÈÖð½¥Ôö´ó£¬ºóÓÖ¼õС£¬×îºóÓÖ±äΪT1 | |
| D£® | T1ÏÈÖð½¥¼õС£¬ºóÓÖÔö´ó£¬×îºóÓÖ±äΪT1 |