题目内容
一弹簧秤的秤盘质量m1=1.5kg,盘内放一质量为m2=10.5kg的物体P,弹簧质量不计,其劲度系数为K=800N/m,系统处于静止状态,如图所示。现给P施加一个竖直向上的力F,使P从静止开始向上做匀加速直线运动,已知在最初0.2s内F是变化的,在0.2s后是恒定的,求F的最大值和最小值各是多少?(g=10m/s2)
![]()
因为在t=0.2s内F是变力,在t=0.2s以后F是恒力,所以在t=0.2s时,P离开秤盘,此时P受到盘的支持力为零,由于盘的质量m1=1.5kg,所以此时弹簧不能处于原长,这与例2轻盘不同。设在0-0.2s这段时间内P向上运动的距离为x,对物体P据牛顿第二定律可得:![]()
![]()
令N=0,并由述二式求得
,
而
,所以求得a=6m/s2。
当P开始运动时拉力最小,此时对盘和物体P整体有Fmin=(
+
)a=72N.
当P与盘分离时拉力F最大,Fmax=
(a+g)=168N.
练习册系列答案
相关题目