题目内容
(1)求滑块K的线圈中最大感应电动势的大小;
(2)若缓冲车厢向前移动距离L后速度为零,则此过程线圈abcd中通过的电量和产生的焦耳热各是多少?
(3)若缓冲车以某一速度
| v | ′ 0 |
| v | ′ 0 |
| n2B2L2 |
| mR |
分析:(1)缓冲车以速度v0与障碍物C碰撞后,滑块相对磁场的速度大小为v0,此时线框中产生的感应电动势最大,由公式Em=nBLv0求出最大感应电热势.
(2)根据法拉第电磁感应定律、欧姆定律和电流的定义式结合求电量.缓冲车厢向前移动距离L后速度为零,缓冲车厢的动能全部转化为内能,根据能量守恒求线圈中产生的热量;
(3)根据法拉第电磁感应定律、欧姆定律和安培力公式得到缓冲车厢所受的最大水平磁场力Fm与
的关系式,根据题意,v=
-
x,当v=0时,求出x.
(2)根据法拉第电磁感应定律、欧姆定律和电流的定义式结合求电量.缓冲车厢向前移动距离L后速度为零,缓冲车厢的动能全部转化为内能,根据能量守恒求线圈中产生的热量;
(3)根据法拉第电磁感应定律、欧姆定律和安培力公式得到缓冲车厢所受的最大水平磁场力Fm与
| v | ′ 0 |
| v | ′ 0 |
| n2B2L2 |
| mR |
解答:解:(1)缓冲车以速度v0与障碍物C碰撞后,滑块K立即停下,滑块相对磁场的速度大小为v0,线圈中产生的感应电动势最大,则有Em=nBLv0.
(2)由法拉第电磁感应定律得
E=n
,其中△Φ=BL2.
由欧姆定律得
=
又
=
代入整理得:此过程线圈abcd中通过的电量q=n
.
由功能关系得:线圈产生的焦耳热为Q=
m
(3)若缓冲车以某一速度
与障碍物C碰撞后,滑块K立即停下,滑块相对磁场的速度大小为
,线圈中产生的感应电动势 E=nBL
,
线圈中感应电流为 I=
线圈ab边受到的安培力F=nBIL
依题意有F=Fm.解得,
=
由题意知,v=
-
x,
当v=0时,解得x=
答:
(1)滑块K的线圈中最大感应电动势的大小是nBLv0;
(2)若缓冲车厢向前移动距离L后速度为零,则此过程线圈abcd中通过的电量和产生的焦耳热各是n
和
m
.
(3)缓冲车与障碍物C碰撞前,导轨右端与滑块K的cd边距离至少为
.
(2)由法拉第电磁感应定律得
E=n
| △Φ |
| △t |
由欧姆定律得
. |
| I |
| E |
| R |
又
. |
| I |
| q |
| t |
代入整理得:此过程线圈abcd中通过的电量q=n
| BL2 |
| R |
由功能关系得:线圈产生的焦耳热为Q=
| 1 |
| 2 |
| v | 2 0 |
(3)若缓冲车以某一速度
| v | ′ 0 |
| v | ′ 0 |
| v | ′ 0 |
线圈中感应电流为 I=
| E |
| R |
线圈ab边受到的安培力F=nBIL
依题意有F=Fm.解得,
| v | ′ 0 |
| FmR |
| n2B2L2 |
由题意知,v=
| v | ′ 0 |
| n2B2L2 |
| mR |
当v=0时,解得x=
| FmmR2 |
| n4B4L4 |
答:
(1)滑块K的线圈中最大感应电动势的大小是nBLv0;
(2)若缓冲车厢向前移动距离L后速度为零,则此过程线圈abcd中通过的电量和产生的焦耳热各是n
| BL2 |
| R |
| 1 |
| 2 |
| v | 2 0 |
(3)缓冲车与障碍物C碰撞前,导轨右端与滑块K的cd边距离至少为
| FmmR2 |
| n4B4L4 |
点评:本题考查学生分析和理解科技成果的能力,运用电磁感应、电路及力学的基本规律进行分析.
练习册系列答案
相关题目