ÌâÄ¿ÄÚÈÝ
12£®Èçͼ1Ëùʾ£¬¹â»¬Ë®Æ½ÃæÉϵÄAÎïÌåÒÔ³õËÙ¶Èv0ȥײ»÷¾²Ö¹µÄBÎïÌ壬BÎïÌåÉϹ̶¨Ò»ÖÊÁ¿²»¼ÆµÄÇáÖʵ¯»É£®ÒÑÖªAÎïÌåµÄÖÊÁ¿Îªm1£¬BÎïÌåµÄÖÊÁ¿Îªm2£®AÎïÌåÔÚOµã´¦¿ªÊ¼Ñ¹Ëõµ¯»É£¬´Ëʱ¿ÌÉèΪ0ʱ¿Ì£¬´Ó¿ªÊ¼Ñ¹Ëõµ¯»Éµ½½«µ¯»ÉѹËõÖÁ×î¶ÌËùÓÃʱ¼äÊÇt1£¬´Óµ¯»É×î¶Ìµ½µ¯»É»Ö¸´µ½Ô³¤ËùÓÃʱ¼äÊÇt2£®A¡¢BʼÖÕÑØÍ¬Ò»Ö±ÏßÔ˶¯£®£¨1£©ÇëÔÚͼ2Öл³öµ¯»Éµ¯Á¦FËæÊ±¼ät±ä»¯µÄʾÒâͼ£¬²¢ÇóAÎïÌåÔÚ0¡«t1ʱ¼äÄÚËùÊܵ½µÄºÏ³åÁ¿£®
£¨2£©Ç󵯻ɱ»Ñ¹Ëõµ½×î¶ÌʱËù¾ßÓеĵ¯ÐÔÊÆÄÜ£»
£¨3£©Èôµ¯»É»Ö¸´Ô³¤Ê±£¬A¡¢BÎïÌåµÄ¶¯Á¿Ç¡ºÃÏàµÈ£¬Çó$\frac{m_1}{m_2}$£®
·ÖÎö £¨1£©·ÖÎöABÓ뵯»É½Ó´¥Ê±µÄÔ˶¯Çé¿öÒÔ¼°µ¯»É³¤¶È±ä»¯Çé¿ö£¬´Ó¶ø»³öͼÏ󣬸ù¾Ý¶¯Á¿Êغ㶨ÂÉÇó³öt1ʱ¿ÌABµÄ¹²Í¬ËÙ¶È£¬ÔÙ¸ù¾Ý¶¯Á¿¶¨ÀíÇó½âAÎïÌåËùÊܺÏÍâÁ¦µÄ³åÁ¿£»
£¨2£©¸ù¾ÝÄÜÁ¿Êغ㶨ÂÉÇó³öµ¯»É±»Ñ¹Ëõµ½×î¶ÌʱËù¾ßÓеĵ¯ÐÔÊÆÄÜ£»
£¨3£©¸ù¾Ý×ܶ¯Á¿ÊغãÒÔ¼°¶¯Á¿Ó붯ÄܵĹØÏµÁÐʽÇó½â¼´¿É£®
½â´ð ½â£º£¨1£©µ¯»É¸Õ¿ªÊ¼´¦ÓÚÔ³¤£¬µ¯Á¦ÎªÁ㣬AѹËõµ¯»Éʱ£¬A×ö¼õËÙÔ˶¯£¬B×ö¼ÓËÙÔ˶¯£¬µ¯»Éµ¯Á¦Ôö´ó£¬ABËٶȲîÖµÔ½À´Ô½Ð¡£¬Ôòµ¯Á¦ËæÊ±¼ä±ä»¯Ô½À´Ô½Âý£¬µ±ABËÙ¶ÈÏàµÈʱ£¬µ¯Á¦×î´ó£¬´ËºóBµÄËÙ¶È´óÓÚAµÄËÙ¶È£¬µ¯Á¦¿ªÊ¼¼õС£¬F-tͼÏóÈçͼËùʾ£º![]()
¸ù¾Ý¶¯Á¿Êغ㶨ÂÉ£¬Ñ¡ÏòÓÒΪÕý·½Ïò£¬ÔòÓУº
m1v0=£¨m1+m2£©V
½âµÃ£º$V=\frac{{{m_1}{v_0}}}{{{m_1}+{m_2}}}$
¸ù¾Ý¶¯Á¿¶¨ÀíµÃ£ºI1=m1V-m1v0
½âµÃ£º${I_1}=-\frac{{{m_1}{m_2}{v_0}}}{{{m_1}+{m_2}}}$
£¨2£©¸ù¾ÝÄÜÁ¿Êغ㶨Âɵãº$\frac{1}{2}mv_0^2={E_P}+\frac{1}{2}£¨{m_1}+{m_2}£©{V^2}$
½âµÃ£º${E_p}=\frac{{{m_1}{m_2}v_0^2}}{{2£¨{m_1}+{m_2}£©}}$
£¨3£©ÓÉÓÚ×ܶ¯Á¿Êغ㣬ÔòP×Ü=2P£¬
¶øP2=2mEK
ÔòÓÐ$\frac{{4{p^2}}}{{2{m_1}}}$=$\frac{p^2}{{2{m_1}}}+\frac{p^2}{{2{m_2}}}$
½âµÃ£º$\frac{m_1}{m_2}$=3
´ð£º£¨1£©µ¯»Éµ¯Á¦FËæÊ±¼ät±ä»¯µÄʾÒâͼ£¬ÈçͼËùʾ£¬AÎïÌåÔÚ0¡«t1ʱ¼äÄÚËùÊܵ½µÄºÏ³åÁ¿Îª$-\frac{{m}_{1}{m}_{2}{v}_{0}}{{m}_{1}+{m}_{2}}$£»
£¨2£©µ¯»É±»Ñ¹Ëõµ½×î¶ÌʱËù¾ßÓеĵ¯ÐÔÊÆÄÜΪ$\frac{{m}_{1}{m}_{2}{v}_{0}^{2}}{2£¨{m}_{1}+{m}_{2}£©}$£»
£¨3£©Èôµ¯»É»Ö¸´Ô³¤Ê±£¬A¡¢BÎïÌåµÄ¶¯Á¿Ç¡ºÃÏàµÈ£¬Ôò$\frac{m_1}{m_2}$µÈÓÚ3£®
µãÆÀ ±¾Ì⿼²éÁ˶¯Á¿Êغ㶨ÂɵÄÓ¦Ó㬷ÖÎöÇå³þÎïÌåÔ˶¯¹ý³Ì£¬Ó¦Óö¯Á¿Êغ㶨ÂÉÓë»úеÄÜÊØºã¶¨Âɼ´¿ÉÕýÈ·½âÌ⣬עÒâʹÓö¯Á¿Êغ㶨ÂÉʱҪ¹æ¶¨Õý·½Ïò£¬ÄѶÈÊÊÖУ®
| A£® | ÏßȦÖиÐÓ¦µçÁ÷µÄ·½ÏòΪabcda | B£® | ´©¹ýÏßȦµÄ´ÅͨÁ¿Îª0 | ||
| C£® | ÏßȦÖеĸÐÓ¦µçÁ÷Ϊ$\frac{nB{l}^{2}¦Ø}{R}$ | D£® | ´©¹ýÏßȦ´ÅͨÁ¿µÄ±ä»¯ÂÊΪ0 |
| A£® | ÌÀÄ·Ëï·¢ÏÖÁ˵ç×Ó²¢Ìá³öÔ×ÓºËʽ½á¹¹Ä£ÐÍ | |
| B£® | ΪÁ˽âÊͺÚÌå·øÉ乿ÂÉ£¬ÆÕÀÊ¿ËÌá³öµç´Å·øÉäµÄÄÜÁ¿ÊÇÁ¿×Ó»¯µÄ | |
| C£® | һȺÇâÔ×Ó´Ón=4µÄ¼¤·¢Ì¬Ïò»ù̬ԾǨʱ£¬×î¶àÄܷųö3ÖÖ²»Í¬ÆµÂʵĹâ×Ó | |
| D£® | ¸ù¾Ý²£¶ûÀíÂÛ¿ÉÖª£¬ÇâÔ×Ó·øÉä³öÒ»¸ö¹â×Ӻ󣬺ËÍâµç×ÓµÄÔ˶¯ËÙ¶ÈÔö´ó | |
| E£® | ²éµÂÍþ¿Ë·¢ÏÖÖÐ×ӵĺ˷´Ó¦·½³ÌÊÇ${\;}_{4}^{9}$Be+${\;}_{2}^{4}$He¡ú${\;}_{0}^{1}$n+${\;}_{6}^{12}$C |
| A£® | ÏòÏ | B£® | ÏòÉÏ | C£® | Ö¸ÏòS¼« | D£® | Ö¸ÏòN¼« |
| A£® | F3=$\frac{{F}_{0}}{4}$£¬F4=$\frac{{F}_{0}}{4}$ | B£® | F3=$\frac{{F}_{0}}{4}$£¬F4=0 | C£® | F3=$\frac{15{F}_{0}}{4}$£¬F4=0 | D£® | F3=4F0£¬F4=$\frac{{F}_{0}}{4}$ |
| A£® | A1¡¢A2Á¢¼´Ï¨Ãð | B£® | A2Á¢¼´Ï¨Ãð£¬A1¹ýÒ»»á¶ùϨÃð | ||
| C£® | A1ÉÁÁÁºó¹ýÒ»»á¶ù²ÅϨÃð | D£® | A2ÉÁÁÁºó¹ýÒ»»á¶ù²ÅϨÃð |