题目内容
如图所示为一半圆形玻璃砖,光屏MN与直径PQ平行,圆心O到MN的距离为d,一由两种单色光组成的复色光与竖直方向成θ=30°角射入玻璃砖的圆心,在光屏上出现了两个光斑,玻璃对两种单色光的折射率分别为n1=
和n2=
,求:
![]()
①离A点最远的光斑与A点之间的距离x;
②为使光屏上的光斑消失,复色光的入射角至少为多少?
【答案】
①
d,②C=45°
【解析】
试题分析:经分析可知2光折射后光斑离A点远
①由
(1分)
x=
=
d
(1分)
②由题意分析可知,当1光光斑消失后,2光光斑也消失,
的最小值为1光的临界角
由
(1分)
得C=45° (1分)
![]()
考点:光的折射
练习册系列答案
相关题目