ÌâÄ¿ÄÚÈÝ
·ÖÎö£º×Óµ¯ÉäÈëľ¿éµÄ¹ý³ÌÖж¯Á¿Êغ㣬ÔÚľ¿éÓë×Óµ¯°Ú¶¯µÄ¹ý³ÌÖУ¬»úеÄÜÊØºã£¬ËùÒÔ×Óµ¯µÄ³õ¶¯ÄÜÓëľ¿éºÍ×Óµ¯Ò»Æð´ïµ½×î´ó°Ú½ÇʱµÄ»úеÄÜÖ®²î¡÷EµÈÓÚ×Óµ¯ÉäÈëľ¿é¹ý³ÌÖлúеÄܵÄËðʧ£®
½â´ð£º½â£º¸ù¾Ý¶¯Á¿ÊغãµÃ£¬mv=£¨M+m£©v¡ä£¬½âµÃv¡ä=
£®
СÎï¿éÓë×Óµ¯ÏµÍ³µÄ»úеÄÜE2=
(M+m)v¡ä2=
£¬Ð¡Ä¾¿éµÄÖÊÁ¿MÔö´ó£¬Ôòϵͳ»úеÄܼõС£¬´ïµ½×î´óµÄ°Ú½Ç¼õС£®
ϵͳ»úеÄܵÄËðʧ¡÷E=
mv2-E2=
mv2(1-
)£¬MÔö´ó£¬Ôò¡÷EÔö´ó£®¹ÊCÕýÈ·£¬A¡¢B¡¢D´íÎó£®
¹ÊÑ¡C£®
| mv |
| M+m |
СÎï¿éÓë×Óµ¯ÏµÍ³µÄ»úеÄÜE2=
| 1 |
| 2 |
| mv2 |
| 2(M+m) |
ϵͳ»úеÄܵÄËðʧ¡÷E=
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| M+m |
¹ÊÑ¡C£®
µãÆÀ£º±¾Ìâ×ۺϿ¼²éÁ˶¯Á¿Êغ㶨ÂÉ¡¢»úеÄÜÊØºã¶¨ÂÉÒÔ¼°ÄÜÁ¿Êغ㶨ÂÉ£¬ÖªµÀ×Óµ¯µÄ³õ¶¯ÄÜÓëľ¿éºÍ×Óµ¯Ò»Æð´ïµ½×î´ó°Ú½ÇʱµÄ»úеÄÜÖ®²î¡÷EµÈÓÚ×Óµ¯ÉäÈëľ¿é¹ý³ÌÖлúеÄܵÄËðʧ£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿