ÌâÄ¿ÄÚÈÝ
£¨1£©³·È¥µç³¡ºóµ¯»ÉµÄ×î´óµ¯ÐÔÊÆÄÜ£»
£¨2£©·µ»ØÔ˶¯µÄ¹ý³ÌÖУ¬Îï¿éBÓÉOµãÏò×óÔ˶¯Ö±µ½¾²Ö¹ËùÓõÄʱ¼ä£®
·ÖÎö£º¸ù¾Ý¶¯Äܶ¨ÀíÇó³öBÎïÌåÔ˶¯µ½OʱµÄËÙ¶È£¬Åöײ¹ý³ÌÓÉÓÚÄÚÁ¦Ô¶Ô¶´óÓÚÍâÁ¦£¬¶¯Á¿Êغ㣬¸ù¾Ý¶¯Á¿ÊغãÇó³öÅöºóAB¹²Í¬ËÙ¶È£¬µ±ABËÙ¶È×îºó¼õµ½0ʱ£¬µ¯»É¾ßÓÐ×î´óµ¯ÐÔÊÆÄÜ£®È»ºó¸ù¾Ý¹¦ÄܹØÏµÇó½â£®
½â´ð£º½â£º£¨1£©»¬¿éB´ÓCµ½O¹ý³Ì£¬¸ù¾Ý¶¯Äܶ¨Àí£¬ÓУº
£¨qE-f£©5L=
¡Á2m¡Á
-0
ÆäÖУºf=0.2qE
½âµÃ£ºv0=2
ÅöײºóAbºÏΪһÌ壬µçÁ¿ÈÔΪq£¬ËÙ¶ÈΪv1=
v0=
µ±Ô˶¯ËÙ¶ÈΪÁãʱ£¬µ¯ÐÔÊÆÄÜ×î´ó£¬ÓУº
Ep=
¡Á(3m)¡Á
+qEL
½âµÃ£º
Ep=
qEL
£¨2£©ÉèÕûÌ廨µ½OµãʱµÄËÙ¶ÈΪv2
Ep=
¡Á(3m)¡Á
½âµÃ£ºv2=
=
½Ó×ÅAB·ÖÀ룬B×öÔȼõËÙÔ˶¯
a=
=
t=
½âµÃ£ºt=
´ð£º£¨1£©³·È¥µç³¡ºóµ¯»ÉµÄ×î´óµ¯ÐÔÊÆÄÜΪ
qEL£»
£¨2£©·µ»ØÔ˶¯µÄ¹ý³ÌÖУ¬Îï¿éBÓÉOµãÏò×óÔ˶¯Ö±µ½¾²Ö¹ËùÓõÄʱ¼äΪ
£®
£¨qE-f£©5L=
| 1 |
| 2 |
| v | 2 0 |
ÆäÖУºf=0.2qE
½âµÃ£ºv0=2
|
ÅöײºóAbºÏΪһÌ壬µçÁ¿ÈÔΪq£¬ËÙ¶ÈΪv1=
| 2 |
| 3 |
| 4 |
| 3 |
|
µ±Ô˶¯ËÙ¶ÈΪÁãʱ£¬µ¯ÐÔÊÆÄÜ×î´ó£¬ÓУº
Ep=
| 1 |
| 2 |
| v | 2 1 |
½âµÃ£º
Ep=
| 11 |
| 3 |
£¨2£©ÉèÕûÌ廨µ½OµãʱµÄËÙ¶ÈΪv2
Ep=
| 1 |
| 2 |
| v | 2 2 |
½âµÃ£ºv2=
|
| 1 |
| 3 |
|
½Ó×ÅAB·ÖÀ룬B×öÔȼõËÙÔ˶¯
a=
| f |
| 2m |
| qE |
| 10m |
t=
| v2 |
| a |
½âµÃ£ºt=
| 10 |
| 3 |
|
´ð£º£¨1£©³·È¥µç³¡ºóµ¯»ÉµÄ×î´óµ¯ÐÔÊÆÄÜΪ
| 11 |
| 3 |
£¨2£©·µ»ØÔ˶¯µÄ¹ý³ÌÖУ¬Îï¿éBÓÉOµãÏò×óÔ˶¯Ö±µ½¾²Ö¹ËùÓõÄʱ¼äΪ
| 10 |
| 3 |
|
µãÆÀ£º¿¼²éÁ˶¯Á¿ÊغãÓ빦ÄܹØÏµµÄ×ÛºÏÓ¦Óã¬×¢Òâ°Ñ¸´ÔӵĹý³Ì·Ö½âΪ¶à¸öС¹ý³Ì£¬Í¬Ê±AÓëBÅöײ¹ý³ÌÖÐÓÐÄÜÁ¿Ëðʧ£¬ÕâµãÒ²ÊǺܶàͬѧÈÝÒ׺öÊӵģ®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿