题目内容

如图所示,倾角为θ的斜面上只有AB段粗糙,其余部分都光滑,AB段长为3L.有若干个相同的小方块(每个小方块视为质点)沿斜面靠在一起,但不粘接,总长为L.将它们由静止释放,释放时下端距A为2L.当下端运动到A下面距AL/2时物块运动的速度达到最大.

(1)求物块与粗糙斜面的动摩擦因数;

(2)求物块停止时的位置;

(3)要使所有物块都能通过B点,由静止释放时物块下端距A点至少要多远?

【答案】 (1)2tan θ (2)停在B端 (3)3L

【解析】 (1)当整体所受合外力为零时,整体速度最大,设整体质量为m,则

mgsin θμmgcos θ

μ=2tan θ.

(2)设物块停止时下端距A点的距离为x,根据动能定理

mg(2Lx)sin θμmgcos θLμmgcos θ(xL)=0

解得x=3L

(3)设静止时物块的下端距A的距离为x,物块的上端运动到A点时速度为v,根据动能定理

mg(Lx)sin θμmgcos θLmv2

物块全部滑上AB部分后,小方块间无弹力作用,取最上面一小块为研究对象,设其质量为m0,运动到B点时速度正好减到0,根据动能定理

m0g3Lsin θμm0g3Lcos θ=0-m0v2x=3L.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网