ÌâÄ¿ÄÚÈÝ
19£®£¨1£©Ò»Â¥Óë¶þÂ¥µÄ¸ß¶È²îH£»
£¨2£©ÔÚABÏäͬʱÔ˶¯µÄ¹ý³ÌÖÐÉþ¶ÔBÏäµÄÀÁ¦×ö¹¦£»
£¨3£©ABÏäͬʱÔ˶¯¹ý³ÌµÄʱ¼ä£®
·ÖÎö £¨1£©B´ÓµØÃæÔ˶¯¶þ¥ƽ̨µÄ¹ý³Ì£¬¶ÔM¡¢m×é³ÉµÄϵͳ£¬Ö»ÓÐÖØÁ¦×ö¹¦£¬¸ù¾Ý¶¯Äܶ¨ÀíÁгö·½³Ì£»AÂ䵨£¬B¼ÌÐøÉÏÉýµÄ¹ý³Ì£¬¶ÔmÔËÓö¯Äܶ¨ÀíÁгö·½³Ì£¬ÁªÁ¢¼´¿ÉÇóµÃH£»
£¨2£©ÒÔBÏäΪÑо¿¶ÔÏó¸ù¾Ý¶¯Äܶ¨ÀíÇó½âÉþÖÐÀÁ¦¶ÔBÏä×öµÄ¹¦£»
£¨3£©AÔȼÓËÙϽµµÄͬʱBÔȼÓËÙÉÏÉý£¬¸ù¾Ý¶¯Äܶ¨ÀíÇó³öAÂäµØÇ°Ë²Ê±µÄËÙ¶È£¬ÔÙ¸ù¾ÝÔȱäËÙÖ±ÏßÔ˶¯µÄƽ¾ùËٶȹ«Ê½Çó³öABͬʱÔ˶¯µÄʱ¼ä£®
½â´ð ½â£º£¨1£©ÒÔAºÍB×é³ÉµÄϵͳÔÚÔ˶¯¹ý³ÌÖÐÖ»ÓÐÖØÁ¦×ö¹¦£¬¸ù¾Ý¶¯Äܶ¨ÀíÓУº
$mgH-mgH=\frac{1}{2}£¨M+m£©{v}^{2}$ ¢Ù
µØºó¶ÔBÔËÓö¯Äܶ¨ÀíÓУº
$-mgh=0-\frac{1}{2}m{v}^{2}$ ¢Ú
ÓÉ¢Ù¢ÚÁ½Ê½¿É½âµÃ£ºH=$\frac{M+m}{M-m}h$
£¨2£©ÒÔBΪÑо¿¶ÔÏó¸ù¾Ý¶¯Äܶ¨ÀíÓУº
W$-mgH=\frac{1}{2}m{v}^{2}$
½âµÃÉþ¶ÔB×öµÄ¹¦W=$\frac{2M}{M-m}mgh$
£¨3£©AÔȼÓËÙϽµµÄͬʱBÔȼÓËÙÉÏÉý£¬¼ÓËÙ¶È´óСÏàµÈ£¬¹ÊÔÚAϽµ¹ý³ÌÖÐµÄÆ½¾ùËÙ¶È
$\overline{v}=\frac{v+0}{2}=\frac{\sqrt{2gh}}{2}$
ËùÒÔABÒ»ÆðÔ˶¯µÄʱ¼ä$t=\frac{H}{\overline{v}}=\frac{\frac{M+m}{M-m}h}{\frac{\sqrt{2gh}}{2}}$=$\frac{M+m}{M-m}\sqrt{\frac{2h}{g}}$
´ð£º£¨1£©Ò»Â¥Óë¶þÂ¥µÄ¸ß¶È²îHΪ$\frac{M+m}{M-m}h$£»
£¨2£©ÔÚABÏäͬʱÔ˶¯µÄ¹ý³ÌÖÐÉþ¶ÔBÏäµÄÀÁ¦×ö¹¦Îª$\frac{2M}{M-m}mgh$£»
£¨3£©ABÏäͬʱÔ˶¯¹ý³ÌµÄʱ¼äΪ$\frac{M+m}{M-m}\sqrt{\frac{2h}{g}}$£®
µãÆÀ ±¾ÌâÉþϵͳµÄÎÊÌ⣬ץסֻÓÐÖØÁ¦¶Ôϵͳ×ö¹¦£¬¸ù¾Ý¶¯Äܶ¨Àí£¨Ò²¿ÉÒÔÓÉ»úеÄÜÊØºã£©ÁÐʽÇó½âÊǹؼü£¬µ«Òª×¢Òâ·Ö¹ý³Ì½øÐÐÑо¿£¬×¼È·Ñ¡ÔñÑо¿¶ÔÏó£®
| A£® | Ö»ÔÚÖØÁ¦×÷ÓÃϵÄÔ˶¯ÊÇ×ÔÓÉÂäÌåÔ˶¯ | |
| B£® | ×ÔÓÉÂäÌåÔ˶¯ÊÇÒ»ÖÖÔÈËÙÔ˶¯ | |
| C£® | ×ÔÓÉÂäÌåÔ˶¯ÊdzõËÙ¶ÈΪÁãµÄÔȼÓËÙÔ˶¯ | |
| D£® | ³õËÙ¶ÈΪÁãµÄÔȼÓËÙÔ˶¯ÊÇ×ÔÓÉÂäÌåÔ˶¯ |
| A£® | ËüµÄƵÂÊÊÇ100HZ | |
| B£® | µçѹµÄÓÐЧֵΪ311V | |
| C£® | ÏßȦת¶¯µÄ½ÇËÙ¶ÈΪ314¦Ðrad/s | |
| D£® | µçѹµÄ˲ʱ±í´ïʽÊÇu=311sin314tv |