ÌâÄ¿ÄÚÈÝ
ͼ£¨¼×£©Ëùʾ£¬Ò»¶Ô½ðÊô°åMºÍNƽÐС¢ÊúÖ±·ÅÖã¬M¡¢NµÄÖÐÐÄ·Ö±ðÓÐС¿×P¡¢Q£¬PQÁ¬Ïß´¹Ö±½ðÊô°å£®N°åÓÒ²àÓÐÒ»°ë¾¶ÎªrµÄÔ²ÐÎÓнçµÄÔÈÇ¿´Å³¡£¬ÆäÔ²ÐÄOÔÚPQµÄÑÓ³¤ÏßÉÏ£¬´Å³¡·½Ïò´¹Ö±ÓÚÖ½ÃæÏòÍ⣬´Å¸ÐӦǿ¶È´óСΪB£®ÖÃÓÚP¿×¸½½üµÄÁ£×ÓÔ´Á¬Ðø²»¶ÏµØÑØPQ·½Ïò·ÅÉä³öÖÊÁ¿Îªm¡¢µçÁ¿Îª+qµÄ´øµçÁ£×Ó£¨´øµçÁ£×ÓËùÊܵÄÖØÁ¦¡¢³õËٶȼ°Á£×Ó¼äµÄÏ໥×÷ÓÃÁ¦¿ÉºöÂÔ£©£¬´Óijһʱ¿Ì¿ªÊ¼£¬ÔÚ°åM¡¢N¼ä¼ÓÉÏÈçͼ£¨ÒÒ£©ËùʾµÄ½»±äµçѹ£¬ÆäÖÜÆÚΪT¡¢µçѹΪU£¬t=0ʱM°åµçÊÆ¸ßÓÚN°åµçÊÆ£®ÒÑÖª´øµçÁ£×ÓÔÚM¡¢NÁ½°å¼äÒ»Ö±×ö¼ÓËÙÔ˶¯µÄʱ¼äСÓÚT/2£¬²¢ÇÒÖ»ÓÐÔÚÿһ¸öÖÜÆÚµÄǰT/4ʱ¼äÄڷųöµÄ´øµçÁ£×Ó²ÅÄÜ´ÓС¿×QÖÐÉä³ö£¬Çó£º
£¨1£©´øµçÁ£×Ó´ÓС¿×QÖÐÉä³öµÄ×î´óËÙ¶È£»
£¨2£©M¡¢NÁ½°å¼äµÄ¾àÀ룻
£¨3£©ÔÚÑØÔ²Ðδų¡µÄ±ß½çÉÏ£¬ÓдøµçÁ£×ÓÉä³öµÄ×î´ó»¡³¤£®

£¨1£©´øµçÁ£×Ó´ÓС¿×QÖÐÉä³öµÄ×î´óËÙ¶È£»
£¨2£©M¡¢NÁ½°å¼äµÄ¾àÀ룻
£¨3£©ÔÚÑØÔ²Ðδų¡µÄ±ß½çÉÏ£¬ÓдøµçÁ£×ÓÉä³öµÄ×î´ó»¡³¤£®
·ÖÎö£º£¨1£©Ö»ÓÐÔÚM¡¢N¼äµç³¡ÖÐÒ»Ö±¼ÓËÙµÄÁ£×Ó´ÓQ¿×Éä³öʱµÄËٶȲÅ×î´ó£¬¼ÓËÙµçѹΪU£¬¸ù¾Ý¶¯Äܶ¨ÀíÇó½â×î´óËÙ¶È£»
£¨2£©ÓÉÓÚµçѹÊÇÖÜÆÚÐԱ仯µÄ£¬ÓÉÌ⣺ֻÓÐÔÚÿһ¸öÖÜÆÚµÄǰ
Tʱ¼äÄڷųöµÄ´øµçÁ£×Ó²ÅÄÜ´ÓС¿×QÖÐÉä³ö£¬ËùÒÔÿһ¸öÖÜÆÚµÄµÚÒ»¸ö
ʱ¿Ì·Å³öµÄ´øµçÁ£×Ó¸ÕºÃÄÜ´ÓС¿×QÖÐÉä³ö£¬¼ÓËٺͼõËÙ·Ö±ð¾ÀúÁË
Tʱ¼ä£¬µ½´ïQ¿×µÄËÙ¶ÈÇ¡ºÃΪÁ㣮¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂɺÍÔ˶¯Ñ§¹«Ê½½áºÏÇó½âM¡¢NÁ½°å¼äµÄ¾àÀ룻
£¨3£©ÓÉÌâÒ⣺ÿһ¸öÖÜÆÚµÄǰ
ʱ¼äÄڷųöµÄ´øµçÁ£×Ó²ÅÄÜ´ÓС¿×QÖÐÉä³ö£¬ÆäÖÐÉä³ö×îÔçµÄÁ£×ÓËÙ¶È×î´ó£¬Ô½ÍíÉä³öµÄÁ£×ÓËÙ¶ÈԽС£®Á£×Ó½øÈë´Å³¡£¬ÆäÖÐËÙ¶ÈԽСµÄÁ£×ÓÔ˶¯°ë¾¶Ô½Ð¡£¬Éä³öµãÀëÉäÈëµãÔ½½ü£¬Æ«×ª½Ç¶ÈÔ½´ó£¨Ô½½Ó½ü¦Ð£©£®×îÔçÉäÈëÕßËÙ¶È×î´ó£¬Ô˶¯°ë¾¶×î´ó£¬Æ«×ª½Ç¶È×îС£¬Éä³öµãÓëÈëÉäµãËù¼Ð»¡³¤×î´ó£®¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɺͼ¸ºÎ֪ʶ½áºÏÇó³öÒÔ×î´óËÙ¶ÈÉäÈëʱÔڴų¡ÖÐµÄÆ«×ª½ÇΪ¦È£¬ÔÙÇó×î´ó»¡³¤£®
£¨2£©ÓÉÓÚµçѹÊÇÖÜÆÚÐԱ仯µÄ£¬ÓÉÌ⣺ֻÓÐÔÚÿһ¸öÖÜÆÚµÄǰ
| 1 |
| 4 |
| T |
| 4 |
| 1 |
| 4 |
£¨3£©ÓÉÌâÒ⣺ÿһ¸öÖÜÆÚµÄǰ
| T |
| 4 |
½â´ð£º
½â£º£¨1£©ÔÚM¡¢Nµç³¡¼ä´¦ÓÚÒ»Ö±¼ÓËÙµÄÁ£×Ó´ÓС¿×QÖÐÉä³öµÄËÙ¶È×î´ó£¬Éè´Ó×î´óËÙ¶ÈΪvm
¸ù¾Ý¶¯Äܶ¨ÀíµÃ qU=
m
½âµÃ£ºvm=
£¨2£©ÉèM¡¢NÁ½°å¼ä¾àÀëΪd£¬ÔòÁ½°å¼äµÄµç³¡Ç¿¶È´óС E=
£¬
ÉèÁ£×ÓÔ˶¯µÄ¼ÓËÙ¶ÈΪa£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɵà qE=ma
½âµÃ£ºa=
ÿһ¸öÖÜÆÚµÄµÚÒ»¸ö
ʱ¿Ì·Å³öµÄ´øµçÁ£×Ó¸ÕºÃÄÜ´ÓС¿×QÖÐÉä³ö£¬Ëü¼ÓËٺͼõËÙ¸÷¾Àú
£¬
ÓÉd=
a(
)2¡Á2
½âµÃ£ºd=
£¨3£©Ã¿Ò»¸öÖÜÆÚµÄǰ
ʱ¼äÄڷųöµÄ´øµçÁ£×Ó²ÅÄÜ´ÓС¿×QÖÐÉä³ö£¬ÆäÖÐÉä³ö×îÔçµÄÁ£×ÓËÙ¶È×î´ó£¬Ô½ÍíÉä³öµÄÁ£×ÓËÙ¶ÈԽС£®Á£×Ó½øÈë´Å³¡£¬ÆäÖÐËÙ¶ÈԽСÕßÔ˶¯°ë¾¶Ô½Ð¡£¬Éä³öµãÀëÉäÈëµãÔ½½ü£¬Æ«×ª½Ç¶ÈÔ½´ó£¨Ô½½Ó½ü¦Ð£©£®×îÔçÉäÈëÕßËÙ¶È×î´ó£¬Ô˶¯°ë¾¶×î´ó£¬Æ«×ª½Ç¶È×îС£¬Éä³öµãÓëÈëÉäµãËù¼Ð»¡³¤×î´ó£®
Éè´øµçÁ£×ÓÒÔ×î´óËÙ¶ÈÉäÈëʱÔڴų¡ÖеÄÔ˶¯°ë¾¶ÎªR£¬Æ«×ª½ÇΪ¦È£¬ÓÉÅ£¶ÙµÚ¶þ¶¨Âɺͼ¸ºÎ¹ØÏµµÃ
Bqv=m
tan
=
½âµÃ£º¦È=2arctanBr
ÉèÑØÔ²Ðδų¡±ß½çÉÏÓдøµçÁ£×ÓÉä³öµÄ×î´ó»¡³¤Îªs£¨Í¼ÖÐʵÏß²¿·Ö£©£¬¸ù¾Ý»¡³¤¹«Ê½
s=r£¨¦Ð-¦È£©=r£¨¦Ð-2arctanBr
£©
´ð£º
£¨1£©´øµçÁ£×Ó´ÓС¿×QÖÐÉä³öµÄ×î´óËÙ¶ÈΪ
£»
£¨2£©M¡¢NÁ½°å¼äµÄ¾àÀëΪ
£»
£¨3£©ÔÚÑØÔ²Ðδų¡µÄ±ß½çÉÏ£¬ÓдøµçÁ£×ÓÉä³öµÄ×î´ó»¡³¤Îªr£¨¦Ð-2arctanBr
£©£®
¸ù¾Ý¶¯Äܶ¨ÀíµÃ qU=
| 1 |
| 2 |
| v | 2 m |
½âµÃ£ºvm=
|
£¨2£©ÉèM¡¢NÁ½°å¼ä¾àÀëΪd£¬ÔòÁ½°å¼äµÄµç³¡Ç¿¶È´óС E=
| U |
| d |
ÉèÁ£×ÓÔ˶¯µÄ¼ÓËÙ¶ÈΪa£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɵà qE=ma
½âµÃ£ºa=
| qU |
| md |
ÿһ¸öÖÜÆÚµÄµÚÒ»¸ö
| T |
| 4 |
| T |
| 4 |
ÓÉd=
| 1 |
| 2 |
| T |
| 4 |
½âµÃ£ºd=
| T |
| 4 |
|
£¨3£©Ã¿Ò»¸öÖÜÆÚµÄǰ
| T |
| 4 |
Éè´øµçÁ£×ÓÒÔ×î´óËÙ¶ÈÉäÈëʱÔڴų¡ÖеÄÔ˶¯°ë¾¶ÎªR£¬Æ«×ª½ÇΪ¦È£¬ÓÉÅ£¶ÙµÚ¶þ¶¨Âɺͼ¸ºÎ¹ØÏµµÃ
Bqv=m
| v2 |
| R |
tan
| ¦È |
| 2 |
| r |
| R |
½âµÃ£º¦È=2arctanBr
|
ÉèÑØÔ²Ðδų¡±ß½çÉÏÓдøµçÁ£×ÓÉä³öµÄ×î´ó»¡³¤Îªs£¨Í¼ÖÐʵÏß²¿·Ö£©£¬¸ù¾Ý»¡³¤¹«Ê½
s=r£¨¦Ð-¦È£©=r£¨¦Ð-2arctanBr
|
´ð£º
£¨1£©´øµçÁ£×Ó´ÓС¿×QÖÐÉä³öµÄ×î´óËÙ¶ÈΪ
|
£¨2£©M¡¢NÁ½°å¼äµÄ¾àÀëΪ
| T |
| 4 |
|
£¨3£©ÔÚÑØÔ²Ðδų¡µÄ±ß½çÉÏ£¬ÓдøµçÁ£×ÓÉä³öµÄ×î´ó»¡³¤Îªr£¨¦Ð-2arctanBr
|
µãÆÀ£º±¾ÌâÔÚÕýÈ··ÖÎöÁ£×ÓÔ˶¯¹ý³ÌµÄ»ù´¡ÉÏ£¬Ó¦Óö¯Äܶ¨Àí¡¢ÀàÆ½Å×Ô˶¯µÄ֪ʶ¡¢Å£¶ÙÔ˶¯¶¨Âɼ´¿ÉÕýÈ·½âÌ⣻±¾ÌâÄѶȽϴó£¬ÊÇÒ»µÀÄÑÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿