题目内容
如图所示,两根平行的金属导轨,固定在同一水平面上,磁感强度B=0.05T的匀强磁场与导轨所在平面垂直,导轨的电阻很小,可忽略不计.导轨间的距离l=0.20m.两根质量均为m=0.10kg的平行金属杆甲、乙可在导轨上无摩擦地滑动,滑动过程中与导轨保持垂直,每根金属杆的电阻为R=0.50Ω.在t=0时刻,两杆都处于静止状态.现有一与导轨平行、大小为0.20N的恒力F作用于金属杆甲上,使金属杆在导轨上滑动.经过t=5.0s,金属杆甲的加速度为a=1.37m/s2,问此时两金属杆的速度各为多少?
答案:
解析:
解析:
|
设任一时刻t,两金属杆甲、乙之间的距离为x,速度分别为v1和v2,经过很短的时间Δt,杆甲移动距离v1Δt,杆乙移动距离v2Δt,回路面积改变 ΔS=[(x-v2Δt)+v1Δt]l-lx =(v1-v2)lΔt 由法拉第电磁感应定律,回路中的感应电动势 E= 回路中的电流 I= 杆甲的运动方程 F-BlI=ma 由于作用于杆甲和杆乙的安培力总是大小相等、方向相反,所以两杆的动量(t=0时为0)等于外力F的冲量 Ft=mv1+mv2 联立以上各式解得 v1= v2= 代入数据得 v1=8.15m/s,v2=1.85m/s |
练习册系列答案
相关题目