题目内容

过山车是游乐场中常见的设施.下图是一种过山车的简易模型,它由水平轨道和在竖直平面内的两个圆形轨道组成,B、C分别是两个圆形轨道的最低点,半径R1=2.0m、R2=1.4m.一个质量为m=1.0kg的小球(视为质点),从轨道的左侧A点以v=12.0m/s的初速度沿轨道向右运动,A、B间距L1=6.0m.小球与水平轨道间的动摩擦因数μ=0.2,圆形轨道是光滑的.假设水平轨道足够长,圆形轨道间不相互重叠.重力加速度g=10m/s2,计算结果保留小数点后一位数字.试求:
(1)小球在经过第一个圆形轨道的最高点时,轨道对小球作用力的大小;
(2)如果小球恰能通过第二个圆形轨道,B、C间距L应是多少.

【答案】分析:(1)小球以一定速度经过粗糙水平轨道后,再滑上竖直的光滑圆轨道,通过动能定理可求出小球在第一个圆形轨道的最高点的速度,从而根据牛顿第二、定律可算出轨道对小球的作用力.
(2)由小球恰能通过第二个圆形轨道,则由牛顿第二定律可求出最高点的速度大小,再由动能定理可求出B、C间距.
解答:解:(1)设小球经过第一个圆轨道的最高点时的速度为v1
根据动能定理有:
小球在最高点受到重力mg和轨道对它的作用力F,
根据牛顿第二定律:
                          
由①②得轨道对小球作用力的大小  F=10N                              
(2)设小球在第二个圆轨道的最高点的速度为v2,由题意
                                  
-μmg(L1+L)-2mgR2=           
由④⑤得 B、C间距 L=12.5m        
答:(1)小球在经过第一个圆形轨道的最高点时,轨道对小球作用力的大小为10N;
(2)如果小球恰能通过第二个圆形轨道,B、C间距L应是12.5m.
点评:(1)小球在运动过程中使用动能定理时要注意,除摩擦阻力做负功外,重力也是做负功.再由牛顿第二定律可求解.
(2)从小球刚好能通过第二个圆轨道,这是解题的突破口.同时注意重力做功时高度是半径的2倍.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网