ÌâÄ¿ÄÚÈÝ
| T |
| 2 |
·ÖÎö£º½«µç×ÓµÄÔ˶¯ÑØË®Æ½·½ÏòºÍÊúÖ±·½ÏòÕý½»·Ö½â£¬Ë®Æ½·½Ïò×öÔÈËÙÔ˶¯£¬ÊúÖ±·½Ïò½öÔڵ糡Á¦×÷ÓÃÏÂ×ö³õËÙ¶ÈΪÁãµÄ±äËÙÖ±ÏßÔ˶¯£»ÈôÊÇÔÚ²»Í¬Ê±¿ÌÉäÈ룬¿ÉÒÔ¸ù¾ÝÔ˶¯Ñ§¹«Ê½ÁÐʽ·ÖÎö£¬Ò²¿ÉÒÔ½áºÏͼÏó·¨·ÖÎö£®
½â´ð£º½â£ºÈôµç×Ó´Ót=0ʱ¿Ì½øÈëÁ½°å¼ä£¬ÔÚ
ʱ¿ÌÇ¡ºÃÄÜ´Ó°åµÄÉϱßÔµ·É³ö£¬ÔòÓÐ
ˮƽ·½Ïò L=v0t ¢Ù
ÊúÖ±·½Ïò
=
at2 ¢Ú
ÆäÖУºt=
£¬a=
¢Û
A¡¢µç×ÓÔÚt=
ʱ¿Ì½øÈëÁ½°å¼ä£¬ÔÚ°ë¸öÖÜÆÚÄÚÆäÊúÖ±·½ÏòÔ˶¯·ÖÁ½¸ö¹ý³Ì£º
-
ʱ¼ä¶ÎÄÚÔȼÓËÙ£»
-
Tʱ¼ä¶ÎÄÚÏÈÔȼõËÙºóÔȼÓËÙ£¬Õû¸ö¹ý³ÌΪÔȱäËÙ£»
ÊúÖ±·ÖÎ»ÒÆÎª
y=
a(
)2+£¨a?
£©
-
a(
) 2=
aT2
¹Êµç×Ó»á´ÓÉÏ·½Éä³ö£¬¹ÊA´íÎó£»
B¡¢Èôµç×Ó´Ó
ʱ¿Ì½øÈëµç³¡£¬ÔòÊúÖ±·½ÏòÏȼÓËÙºóÔÈËÙ£¬ÊúÖ±·ÖÎ»ÒÆÎª
y=
a£¨
£©2+a?£¨
£©?
=
aT2 ¢Ü
Óɢ٢ۢܵõ½y=
d£¼
£¬¼´µç×Ó¾¹ý°ë¸öÖÜÆÚ´ÓÉÏ·½Éä³ö£¬¹ÊBÕýÈ·£»
C¡¢Èôµç×ÓÔÚÊúÖ±·½ÏòÏȼÓËÙºóÔȼõËÙÔÙ¼ÓËÙϽµ£¬ÆäÊúÖ±·ÖÎ»ÒÆÓпÉÄÜΪÁ㣬¹ÊCÕýÈ·£»
D¡¢ÔÚ´Ót=0ʱ¿Ìµ½t=
ʱ¿ÌÕâÒ»¶Îʱ¼ä½øÈëÁ½°å¼äµÄµç×ÓÖУ¬µç³¡Á¦¶Ôµç×Ó×ö¹¦Îª£ºW=eEy¡ÜeE
=
eU0£¬¹ÊD´íÎó£»
¹ÊÑ¡BC£®
| T |
| 2 |
ˮƽ·½Ïò L=v0t ¢Ù
ÊúÖ±·½Ïò
| d |
| 2 |
| 1 |
| 2 |
ÆäÖУºt=
| T |
| 2 |
| eU0 |
| dm |
A¡¢µç×ÓÔÚt=
| T |
| 3 |
| T |
| 3 |
| T |
| 2 |
| T |
| 2 |
| 5 |
| 6 |
ÊúÖ±·ÖÎ»ÒÆÎª
y=
| 1 |
| 2 |
| T |
| 6 |
| T |
| 6 |
| T |
| 3 |
| 1 |
| 2 |
| T |
| 3 |
| 1 |
| 72 |
¹Êµç×Ó»á´ÓÉÏ·½Éä³ö£¬¹ÊA´íÎó£»
B¡¢Èôµç×Ó´Ó
| T |
| 4 |
y=
| 1 |
| 2 |
| T |
| 4 |
| T |
| 4 |
| T |
| 4 |
| 3 |
| 32 |
Óɢ٢ۢܵõ½y=
| 3 |
| 8 |
| d |
| 2 |
C¡¢Èôµç×ÓÔÚÊúÖ±·½ÏòÏȼÓËÙºóÔȼõËÙÔÙ¼ÓËÙϽµ£¬ÆäÊúÖ±·ÖÎ»ÒÆÓпÉÄÜΪÁ㣬¹ÊCÕýÈ·£»
D¡¢ÔÚ´Ót=0ʱ¿Ìµ½t=
| T |
| 2 |
| d |
| 2 |
| 1 |
| 2 |
¹ÊÑ¡BC£®
µãÆÀ£º±¾ÌâÖеç×ÓÔÚˮƽ·½ÏòÔÈËÙ£¬¹Ê¾¹ýµç³¡ÇøÓòµÄʱ¼äÊÇÒ»¶¨µÄ£¬ÊúÖ±·½ÏòÔڵ糡Á¦µÄ×÷ÓÃÏÂ×ö±äËÙÔ˶¯£¬¸ù¾ÝÔ˶¯Ñ§¹«Ê½ÁÐʽÇó½â¼´¿É£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿