题目内容

如图所示,O点离地面高度为H,以O点为圆心,制作一个半径为R的四分之一光滑圆弧轨道,小球从与O点等高的圆弧最高点A从静止滚下,并从B点水平抛出,试求:

(1)小球落地点到O点的水平距离.

(2)要使这一距离最大,应满足什么条件?最大距离为多少?

(1)s=

(2)R=时,s最大,

最大水平距离为smax=H


解析:

(1)小球在圆弧上滑下过程中受重力和轨道弹力作用,但轨道弹力不做功,即只有重力做功,机械能守恒,可求得小球平抛的初速度v0.

根据机械能守恒定律得mgR=

设水平距离为s,根据平抛运动规律可得s=.

(2)因H为定值,则当R=H-R,即R=时,s最大,

最大水平距离为smax==H

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网