ÌâÄ¿ÄÚÈÝ
17£®| A£® | ÎïÌåµ½´ï¸÷µãµÄËÙÂÊÖ®±Èv B£ºvC£ºv D£ºvE=1£º$\sqrt{2}$£º$\sqrt{3}$£º2 | |
| B£® | ÎïÌåµ½´ï¸÷µãËù¾ÀúµÄʱ¼ät E=2t B=$\sqrt{2}$tC=$\frac{2}{\sqrt{3}}$tD | |
| C£® | ÎïÌå´Ó A Ô˶¯µ½ E µÄÈ«¹ý³Ìƽ¾ùËÙ¶È$\overline{v}$=vB | |
| D£® | ÎïÌåͨ¹ýÿһ²¿·Öʱ£¬ÆäËÙ¶ÈÔöÁ¿v B-vA=v D-vC=v E-vD |
·ÖÎö A¡¢¸ù¾Ýv2=2ax£¬¿ÉÇó³öÎïÌåµ½´ï¸÷µãµÄËÙ¶ÈÖ®±È£®
B¡¢³õËÙ¶ÈΪÁãµÄÔȼÓËÙÔ˶¯µÄÍÆÂÛ£ºtB£ºtC£ºtD£ºtE=$1£º\sqrt{2}£º\sqrt{3}£º\sqrt{4}$¸ù¾ÝÕâ¸ö½áÂÛÅжÏʱ¼ä¹ØÏµ£®
C¡¢ÎïÌå´ÓAÔ˶¯µ½EµÄÈ«¹ý³Ìƽ¾ùËٶȵÈÓÚÖмäʱ¿ÌµÄ˲ʱËÙ¶È
D¡¢¿´Ã¿Ò»¶ÎÎ»ÒÆËùÓõÄʱ¼äÊÇ·ñÏàͬȥÅжÏËٶȵÄÔöÁ¿¹ØÏµ£®
½â´ð ½â£ºA¡¢³õËÙ¶ÈΪÁãµÄÔȼÓËÙÔ˶¯µÄÍÆÂÛ£ºtB£ºtC£ºtD£ºtE=$1£º\sqrt{2}£º\sqrt{3}£º\sqrt{4}$£¬ÎïÌåµ½´ï¸÷µãµÄËÙÂÊÖ®±ÈΪ$1£º\sqrt{2}£º\sqrt{3}£º\sqrt{4}$£¬¹ÊAÕýÈ·
B¡¢ÒòΪv=at£¬³õËÙ¶ÈΪÁãµÄÔȼÓËÙÔ˶¯µÄÍÆÂÛ£ºtB£ºtC£ºtD£ºtE=$1£º\sqrt{2}£º\sqrt{3}£º\sqrt{4}$£¬ÎïÌåµ½´ï¸÷µãµÄËÙÂÊÖ®±ÈΪ$1£º\sqrt{2}£º\sqrt{3}£º\sqrt{4}$£¬¹ÊÎïÌåµ½´ï¸÷µãËù¾ÀúµÄʱ¼ä${t}_{E}^{\;}=2{t}_{B}^{\;}=\sqrt{2}{t}_{C}^{\;}=\frac{2}{\sqrt{3}}{t}_{D}^{\;}$£¬¹ÊBÕýÈ·
C¡¢ÎïÌå´ÓAÔ˶¯µ½EµÄÈ«¹ý³Ìƽ¾ùËٶȵÈÓÚÖмäʱ¿ÌµÄ˲ʱËÙ¶È£¬¹Ê$\overline{v}$=vB£¬¹ÊCÕýÈ·£»
D¡¢ÎïÌåͨ¹ýÿһ²¿·Öʱ£¬ËùÓÃʱ¼ä²»Í¬£¬¹ÊÆäËÙ¶ÈÔöÁ¿²»Í¬£¬¹ÊD´íÎó
¹ÊÑ¡£ºABC
µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÕÆÎÕËÙ¶ÈÎ»ÒÆ¹«Ê½v2-v02=2ax£¬ÒÔ¼°ÖªµÀij¶Îʱ¼äÄ򵀮½¾ùËٶȵÈÓÚÖмäʱ¿ÌµÄ˲ʱËÙ¶È£®
| A£® | AÎïÌåµÄÖÊÁ¿Îª3m | |
| B£® | AÎïÌåµÄÖÊÁ¿Îª2m | |
| C£® | µ¯»ÉѹËõ×î´óʱµÄµ¯ÐÔÊÆÄÜΪ$\frac{3}{2}$mv02 | |
| D£® | µ¯»ÉѹËõ×î´óʱµÄµ¯ÐÔÊÆÄÜΪmv02 |
| A£® | Çò¿ÇÊܵ½Ö§µãPµÄÖ§³ÖÁ¦·½Ïò²»±ä | |
| B£® | Çò¿ÇÊܵ½Ö§µãP¡¢QµÄÖ§³ÖÁ¦µÄ¼Ð½ÇÔ½À´Ô½Ð¡ | |
| C£® | Çò¿ÇÊܵ½µÄÖ§³ÖÁ¦ºÏÁ¦²»±ä | |
| D£® | Çò¿ÇÊܵ½Ö§µãPµÄÖ§³ÖÁ¦Öð½¥Ôö´ó |
| A£® | $\frac{16s}{3{t}^{2}}$ | B£® | $\frac{8s}{3{t}^{2}}$ | C£® | $\frac{4s}{3{t}^{2}}$ | D£® | $\frac{2s}{3{t}^{2}}$ |
| A£® | ÔÚͼʾ¹ìµÀÉÏ£¬¡°¹ìµÀ¿µ¸´Õß¡±µÄÖÜÆÚΪ6h | |
| B£® | ÔÚͼʾ¹ìµÀÉÏ£¬¡°¹ìµÀ¿µ¸´Õß¡±¼ÓËÙ¶È´óСÊÇͬ²½ÎÀÐǼÓËÙ¶È´óСµÄ4±¶ | |
| C£® | ÔÚͼʾ¹ìµÀÉÏ£¬¡°¹ìß@¿µ¸´Õß¡±µÄÏßËÙ¶È´óСÊÇͬ²½ÎÀÐÇÏßËÙ¶È´óСµÄ2±¶ | |
| D£® | ÈôÒª¶Ô¸Ãͬ²½ÎÀÐÇʵʩÕü¾È£¬¡°¹ìµÀ¿µ¸´Õß¡±¿É´Óͼʾ¹ìµÀÉϽøÐмÓËÙºóÔÙÓëͬ²½ÎÀÐÇ¶Ô½Ó |
| A£® | ´óµØ | B£® | Ê÷ľ | C£® | »ð³µ | D£® | Ìú¹ì |