ÌâÄ¿ÄÚÈÝ

17£®ÈçͼËùʾ£¬¹â»¬Ð±Ãæ±»·Ö³ÉËĸö³¤¶ÈÏàµÈµÄ²¿·Ö£¬¼´ AB=BC=CD=DE£¬Ò»ÎïÌåÓÉ A µã¾²Ö¹ÊÍ·Å£¬ÏÂÁнáÂÛÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®ÎïÌåµ½´ï¸÷µãµÄËÙÂÊÖ®±Èv B£ºvC£ºv D£ºvE=1£º$\sqrt{2}$£º$\sqrt{3}$£º2
B£®ÎïÌåµ½´ï¸÷µãËù¾­ÀúµÄʱ¼ät E=2t B=$\sqrt{2}$tC=$\frac{2}{\sqrt{3}}$tD
C£®ÎïÌå´Ó A Ô˶¯µ½ E µÄÈ«¹ý³Ìƽ¾ùËÙ¶È$\overline{v}$=vB
D£®ÎïÌåͨ¹ýÿһ²¿·Öʱ£¬ÆäËÙ¶ÈÔöÁ¿v B-vA=v D-vC=v E-vD

·ÖÎö A¡¢¸ù¾Ýv2=2ax£¬¿ÉÇó³öÎïÌåµ½´ï¸÷µãµÄËÙ¶ÈÖ®±È£®
B¡¢³õËÙ¶ÈΪÁãµÄÔȼÓËÙÔ˶¯µÄÍÆÂÛ£ºtB£ºtC£ºtD£ºtE=$1£º\sqrt{2}£º\sqrt{3}£º\sqrt{4}$¸ù¾ÝÕâ¸ö½áÂÛÅжÏʱ¼ä¹ØÏµ£®
C¡¢ÎïÌå´ÓAÔ˶¯µ½EµÄÈ«¹ý³Ìƽ¾ùËٶȵÈÓÚÖмäʱ¿ÌµÄ˲ʱËÙ¶È
D¡¢¿´Ã¿Ò»¶ÎÎ»ÒÆËùÓõÄʱ¼äÊÇ·ñÏàͬȥÅжÏËٶȵÄÔöÁ¿¹ØÏµ£®

½â´ð ½â£ºA¡¢³õËÙ¶ÈΪÁãµÄÔȼÓËÙÔ˶¯µÄÍÆÂÛ£ºtB£ºtC£ºtD£ºtE=$1£º\sqrt{2}£º\sqrt{3}£º\sqrt{4}$£¬ÎïÌåµ½´ï¸÷µãµÄËÙÂÊÖ®±ÈΪ$1£º\sqrt{2}£º\sqrt{3}£º\sqrt{4}$£¬¹ÊAÕýÈ·
B¡¢ÒòΪv=at£¬³õËÙ¶ÈΪÁãµÄÔȼÓËÙÔ˶¯µÄÍÆÂÛ£ºtB£ºtC£ºtD£ºtE=$1£º\sqrt{2}£º\sqrt{3}£º\sqrt{4}$£¬ÎïÌåµ½´ï¸÷µãµÄËÙÂÊÖ®±ÈΪ$1£º\sqrt{2}£º\sqrt{3}£º\sqrt{4}$£¬¹ÊÎïÌåµ½´ï¸÷µãËù¾­ÀúµÄʱ¼ä${t}_{E}^{\;}=2{t}_{B}^{\;}=\sqrt{2}{t}_{C}^{\;}=\frac{2}{\sqrt{3}}{t}_{D}^{\;}$£¬¹ÊBÕýÈ·
C¡¢ÎïÌå´ÓAÔ˶¯µ½EµÄÈ«¹ý³Ìƽ¾ùËٶȵÈÓÚÖмäʱ¿ÌµÄ˲ʱËÙ¶È£¬¹Ê$\overline{v}$=vB£¬¹ÊCÕýÈ·£»
D¡¢ÎïÌåͨ¹ýÿһ²¿·Öʱ£¬ËùÓÃʱ¼ä²»Í¬£¬¹ÊÆäËÙ¶ÈÔöÁ¿²»Í¬£¬¹ÊD´íÎó
¹ÊÑ¡£ºABC

µãÆÀ ½â¾ö±¾ÌâµÄ¹Ø¼üÕÆÎÕËÙ¶ÈÎ»ÒÆ¹«Ê½v2-v02=2ax£¬ÒÔ¼°ÖªµÀij¶Îʱ¼äÄ򵀮½¾ùËٶȵÈÓÚÖмäʱ¿ÌµÄ˲ʱËÙ¶È£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
12£®ÈçͼËùʾ£¬ÎªÄ³Í¬Ñ§²â¶¨µçÔ´µç¶¯ÊÆEºÍÄÚ×èrµÄʵÑéµç·£¬Í¼ÖÐEΪ´ý²âµçÆ÷£¬A1¡¢A2£¬V1¡¢V2¾ùΪ·ÇÀíÏëµç±í£¬ÄÚ×èδ֪£¬GΪÁéÃôµçÁ÷¼Æ£¬R1¡¢R2Ϊ»¬¶¯±ä×èÆ÷£¬SΪ¿ª¹Ø£¬ÊµÑéµÄÖ÷Òª²½ÖèΪ£º
¢Ù±ÕºÏ¿ª¹ØS£¬µ÷½Ú»¬¶¯±ä×èÆ÷R1¡¢R2£¬Ê¹µçÁ÷¼ÆGµÄʾÊýΪÁ㣬¶Á³ö´ËʱµçÁ÷±íA1¡¢A2µÄʾÊýÖ®ºÍI1£¬ÒÔ¼°µçѹ±íV1£¬V2µÄʾÊýÖ®ºÍU1£»
¢ÚÁ½´Îµ÷½Ú»¬¶¯±ä×èÆ÷R1£¬R2£¬Ê¹µçÁ÷¼ÆGµÄʾÊýΪÁ㣬¶Á³ö´ËʱµçÁ÷±íA1£¬A2µÄʾÊýÖ®ºÍI2£¬ÒÔ¼°µçѹ±íV1£¬V2µÄʾÊýÖ®ºÍU2£»
¢Û¶Ï¿ª¿ª¹ØS£®
ÊԻشðÏÂÁÐÎÊÌ⣺
£¨1£©¿ª¹ØS±ÕºÏºó£¬Í¼Ö묶¯±ä×èR1¡¢R2µÄ»¬¶¯´¥Í·¾ùÓ¦ÖÃÓÚ±ä×èÆ÷µÄÓÒ¶Ë£¨Ìî¡°×ó¡±»ò¡°ÓÒ¡±£©£»
£¨2£©¿ª¹ØS±ÕºÏºó£¬µ±µ÷½Ú»¬¶¯±ä×èÆ÷R1¡¢R2£¬Ê¹µçÁ÷¼ÆGµÄʾÊýΪÁãʱ£¬Í¼ÖÐa¡¢bÁ½µãµÄµçÊÆ¦Õ1=¦Õ2£¬c¡¢aÁ½µãÓëc£¬bÁ½µãµÄµçÊÆ²îUa=Ub£¨Ìî¡°£¾¡±¡¢¡°=¡±»ò¡°£¼¡±£©
£¨3£©µçÁ÷±íºÍµçѹ±íµÄÄÚ×è²»»á£¨Ìî¡°»á¡±»ò¡°²»»á¡±£©¶Ô²âÁ¿½á¹ûÔì³ÉÓ°Ïì
£¨4£©¸ù¾ÝÁ½´Î²âÁ¿Êý¾Ý£¬¿ÉµÃµçÔ´µç¶¯ÊÆÎªE=$\frac{{U}_{2}{I}_{1}-{U}_{1}{I}_{2}}{{I}_{1}-{I}_{2}}$£¬µçÔ´ÄÚ×èΪr=$\frac{{U}_{2}-{U}_{1}}{{I}_{1}-{I}_{2}}$£®

Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com

¾«Ó¢¼Ò½ÌÍø