ÌâÄ¿ÄÚÈÝ
1932Ä꣬ÀÍÂ×˹ºÍÀûÎÄ˹Éè¼Æ³öÁË»ØÐý¼ÓËÙÆ÷¡£»ØÐý¼ÓËÙÆ÷µÄ¹¤×÷ÔÀíÈçͼËùʾ£¬ÖÃÓÚ¸ßÕæ¿ÕÖеÄDÐνðÊôºÐ°ë¾¶ÎªR£¬Á½ºÐ¼äµÄÏÁ·ì¾àÀëΪd£¬¡£´Å¸ÐӦǿ¶ÈΪBµÄÔÈÇ¿´Å³¡ÓëºÐÃæ´¹Ö±¡£A´¦Á£×ÓÔ´²úÉúµÄÁ£×Ó£¬ÖÊÁ¿Îªm¡¢µçºÉÁ¿Îª+q £¬ÔÚ¼ÓËÙÆ÷Öб»¼ÓËÙ£¬¼ÓËÙµçѹΪU¡£¼ÓËÙ¹ý³ÌÖв»¿¼ÂÇÏà¶ÔÂÛЧӦºÍÖØÁ¦×÷Óá£
£¨1£©ÇóÁ£×ÓµÚ2´ÎºÍµÚ1´Î¾¹ýÁ½DÐκмäÏÁ·ìºó¹ìµÀ°ë¾¶Ö®±È£»
£¨2£©ÇóÁ£×Ó´Ó¾²Ö¹¿ªÊ¼¼ÓËÙµ½³ö¿Ú´¦(µç³¡ºÍ´Å³¡)ËùÐèµÄ×Üʱ¼ät£»
![]()
+![]()
½âÎö:
£¨1£©Á£×ÓµÚÒ»´Î½øÈëµç³¡£¬Ôò
eu=1/2*m(v1)2
Á£×ÓÔڴų¡ÖÐ
qvB=m(v1)2/r1
Á£×ÓµÚ¶þ´Î½øÈëµç³¡£¬Ôò
2eu=1/2*m(v2)2
Á£×ÓÔڴų¡ÖÐ
qvB=m(v2)2/r2
ÓÉÉÏʽµÃr1£ºr2=¡Ì2£º1
£¨2£©Ôڵ糡ÖÐ
v2t1/2=d
Ôڴų¡ÖÐ
t2=¦Ðr1/v1+¦Ðr2/v2
T=t1+t2
ËùÒÔT+
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿