题目内容

如图,粗糙水平地面上有一压缩并锁定的弹簧,弹簧左端固定于竖直墙壁上,右端与一质量为m=0.1kg的小物块A(可视为质点)接触但不连接,光滑的固定半圆周轨道MP与地面相切于M点,P点为轨道的最高点.现解除弹簧锁定,弹簧将小物块A推出,A沿粗糙水平地面运动,之后沿圆周轨道运动并恰能通过P点.已知A与地面间的动摩擦因数为μ=0.25,最初A与M点的距离L1=2m,圆周轨道半径R=0.4m,g取10m/s2,空气阻力不计.求:
(1)小滑块到达P点时的速度大小;
(2)弹簧弹力对滑块所做的功.
(3)弹簧仍将小物块从A点推出,为了使小物块能够从P点落回A点,此时A与M点的距离L2应该取多大.
分析:(1)小物块沿圆周轨道运动并恰能通过P点,说明在P点小物块受到的重力恰好提供向心力;
(2)整个的过程中重力、摩擦力和弹簧做功,小物块的动能增大.根据动能定理即可求得弹簧做功;
(3)小物块离开P点后做平抛运动,将它的运动安竖直方向和水平方向分解,使用运动学的公式即可求得.
解答:解:(1)设小物块A到达圆周轨道最高点P时的速度为vp,由题意有:mg=m
v
2
p
R

解得:vp=2m/s
(2)从解除锁定到物块滑至最高点P的过程中,由动能定理有:W-μmgL1-2mgR=
1
2
m
v
2
p

解得:W=1.5J
(3)小球离开P点以v0做平抛,落地的时间为t,
根据:h=2R=
1
2
gt2

解得:t=0.4s
L2=v0t
从解除锁定到物块滑至最高点P的过程中,由动能定理有:W-μmgL2-2mgR=
1
2
m
v
2
0

解得:
v
 
0
=
15
-1
≈2.87m/s   L2=
2
15
-2
5
≈1.55m
答:(1)小滑块到达P点时的速度大小为2m/s;
(2)弹簧弹力对滑块所做的功为1.5J.
(3)A与M点的距离L2应该取1.55m.
点评:该题将动能定理与竖直平面内的圆周运动结合起来,运动情景的设置比较经典,使用的公式都是常规的一些公式.该类题目要注意对运动过程的分析.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网