ÌâÄ¿ÄÚÈÝ
£¨1£©Ð¡³µËùÊܵ½µÄ×èÁ¦´óС£»
£¨2£©Ð¡³µÔÈËÙÐÐÊ»½×¶ÎµÄ¹¦ÂÊ£»
£¨3£©Ð¡³µÔÚÕû¸öÔ˶¯¹ý³ÌÖÐÎ»ÒÆµÄ´óС£®
·ÖÎö£º£¨1£©¸ù¾Ý14s¡«18sÄÚ×öÔȼõËÙÖ±ÏßÔ˶¯Çó³öÔ˶¯µÄ¼ÓËÙ¶È£¬ÔÙ¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³ö×èÁ¦µÄ´óС£®
£¨2£©ÔÚ10¡«14sÄÚ£¬Ð¡³µ×öÔÈËÙÖ±ÏßÔ˶¯£¬Ç£ÒýÁ¦µÈÓÚ×èÁ¦£¬¸ù¾ÝP=Fv=fvÇó³öС³µÔÈËÙÐÐÊ»µÄ¹¦ÂÊ£®
£¨3£©0¡«2sÄÚС³µ×öÔȼÓËÙÖ±ÏßÔ˶¯£¬¸ù¾ÝÔ˶¯Ñ§¹«Ê½Çó³ö0¡«2sÄÚµÄÎ»ÒÆ£¬2¡«10sÄÚ×ö±ä¼ÓËÙÖ±ÏßÔ˶¯£¬¸ù¾Ý¶¯Äܶ¨ÀíÇó³ö±ä¼ÓËÙÖ±ÏßÔ˶¯µÄÎ»ÒÆ£¬ÔÙÇó³öÔÈËÙºÍÔȼõËÙÖ±ÏßÔ˶¯µÄÎ»ÒÆ£¬´Ó¶øµÃ³ö×ÜÎ»ÒÆ£®
£¨2£©ÔÚ10¡«14sÄÚ£¬Ð¡³µ×öÔÈËÙÖ±ÏßÔ˶¯£¬Ç£ÒýÁ¦µÈÓÚ×èÁ¦£¬¸ù¾ÝP=Fv=fvÇó³öС³µÔÈËÙÐÐÊ»µÄ¹¦ÂÊ£®
£¨3£©0¡«2sÄÚС³µ×öÔȼÓËÙÖ±ÏßÔ˶¯£¬¸ù¾ÝÔ˶¯Ñ§¹«Ê½Çó³ö0¡«2sÄÚµÄÎ»ÒÆ£¬2¡«10sÄÚ×ö±ä¼ÓËÙÖ±ÏßÔ˶¯£¬¸ù¾Ý¶¯Äܶ¨ÀíÇó³ö±ä¼ÓËÙÖ±ÏßÔ˶¯µÄÎ»ÒÆ£¬ÔÙÇó³öÔÈËÙºÍÔȼõËÙÖ±ÏßÔ˶¯µÄÎ»ÒÆ£¬´Ó¶øµÃ³ö×ÜÎ»ÒÆ£®
½â´ð£º½â£º£¨1£©ÔÚ14s¡«18sʱ¼ä¶Î¼ÓËÙ¶È
a=
=
m/s2=-1.5m/s2 £¨¸ººÅ±íʾ·½Ïò£©
Ff=ma=1.0¡Á1.5N=1.5N
£¨2£©ÔÚ10¡«14sÄÚС³µ×÷ÔÈËÙÔ˶¯£¬Ç£ÒýÁ¦F=Ff
P=Fv=1.5¡Á6W=9W
£¨3£©0¡«2sÄÚx1=
¡Á2¡Á3m=3m
2s-10sÄÚ¸ù¾Ý¶¯Äܶ¨Àí
Pt-Ffx2=
mv2-
m
½âµÃ x2=39m
ÔÈËÙÖ±ÏßÔ˶¯µÄÎ»ÒÆ´óСx3=vt3=6¡Á4m=24m
ÔȼõËÙÖ±ÏßÔ˶¯µÄÎ»ÒÆ´óСx4=
¡Át4=3¡Á4m=12m
Õû¸ö¹ý³ÌÖÐÔ˶¯µÄÎ»ÒÆx=x1+x2+x3+x4=78m£®
´ð£º£¨1£©Ð¡³µËùÊܵ½µÄ×èÁ¦´óСΪ1.5N£®
£¨2£©Ð¡³µÔÈËÙÐÐÊ»½×¶ÎµÄ¹¦ÂÊΪ9W£®
£¨3£©Ð¡³µÔÚÕû¸öÔ˶¯¹ý³ÌÖÐÎ»ÒÆµÄ´óСΪ78m£®
a=
| ¡÷v |
| ¡÷t |
| -6 |
| 4 |
Ff=ma=1.0¡Á1.5N=1.5N
£¨2£©ÔÚ10¡«14sÄÚС³µ×÷ÔÈËÙÔ˶¯£¬Ç£ÒýÁ¦F=Ff
P=Fv=1.5¡Á6W=9W
£¨3£©0¡«2sÄÚx1=
| 1 |
| 2 |
2s-10sÄÚ¸ù¾Ý¶¯Äܶ¨Àí
Pt-Ffx2=
| 1 |
| 2 |
| 1 |
| 2 |
| v | 2 1 |
½âµÃ x2=39m
ÔÈËÙÖ±ÏßÔ˶¯µÄÎ»ÒÆ´óСx3=vt3=6¡Á4m=24m
ÔȼõËÙÖ±ÏßÔ˶¯µÄÎ»ÒÆ´óСx4=
| v |
| 2 |
Õû¸ö¹ý³ÌÖÐÔ˶¯µÄÎ»ÒÆx=x1+x2+x3+x4=78m£®
´ð£º£¨1£©Ð¡³µËùÊܵ½µÄ×èÁ¦´óСΪ1.5N£®
£¨2£©Ð¡³µÔÈËÙÐÐÊ»½×¶ÎµÄ¹¦ÂÊΪ9W£®
£¨3£©Ð¡³µÔÚÕû¸öÔ˶¯¹ý³ÌÖÐÎ»ÒÆµÄ´óСΪ78m£®
µãÆÀ£º±¾ÌâÊÇÓëͼÏó½áºÏµÄÎÊÌ⣬¹Ø¼üͨ¹ýͼÏóÖªµÀС³µÔÚÕû¸ö¹ý³ÌÖеÄÔ˶¯Çé¿ö£¬½áºÏÅ£¶ÙµÚ¶þ¶¨ÂɺÍÔ˶¯Ñ§¹«Ê½½øÐÐÇó½â£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿