ÌâÄ¿ÄÚÈÝ
ÔÚ¡°Ì½¾¿¼ÓËÙ¶ÈÓëÁ¦¡¢ÖÊÁ¿µÄ¹ØÏµ¡±µÄʵÑéÖУ¨1£©ÏÂÊö²Ù×÷²½ÖèµÄ°²ÅÅ˳Ðò²»¾¡ºÏÀí£¬Ç뽫ºÏÀíµÄ˳ÐòÒÔ×Öĸ´úºÅÌîдÔÚºáÏßÉÏ
A£®±£³ÖСͰÀïɳ×ÓµÄÖÊÁ¿²»±ä£¬ÔÚС³µÀï¼ÓíÀÂ룬²â³ö¼ÓËÙ¶È£¬Öظ´¼¸´Î
B£®±£³ÖС³µÖÊÁ¿²»±ä£¬¸Ä±äСͰºÍɳ×ÓµÄÖÊÁ¿£¬²â³ö¼ÓËÙ¶È£¬Öظ´¼¸´Î
C£®ÓÃÌìÆ½²â³öС³µºÍСͰ¼°É³×ÓµÄÖÊÁ¿
D£®Æ½ºâĦ²ÁÁ¦£¬Ê¹Ð¡³µ½üËÆ×öÔÈËÙÖ±ÏßÔ˶¯
E£®¹ÒÉÏɳͰ£¬½Óͨ´òµã¼ÆÊ±Æ÷µÄµçÔ´£¬·Å¿ªÐ¡³µ£¬ÔÚÖ½´øÉÏ´òÏÂһϵÁеĵã
F£®¸ù¾Ý²âÁ¿µÄÊý¾Ý£¬·Ö±ð»³öa-FºÍa-1/mµÄͼÏß
£¨2£©±¾ÊÔÑéÖ½´øµÄ¼Ç¼ÈçͼËùʾ£¬´ÓAµãÆðÿ5¸öµãȡһ¸ö¼ÆÊýµã£¬¼´Á½ÏàÁÚ¼ÆÊýµã¼äµÄʱ¼ä¼ä¸ôΪ0.1s£¬ÔòÎïÌåÔ˶¯µÄ¼ÓËÙ¶ÈΪ

C¡¢D¡¢E¡¢A¡¢B¡¢F»òC¡¢D¡¢E¡¢B¡¢A¡¢F£®
C¡¢D¡¢E¡¢A¡¢B¡¢F»òC¡¢D¡¢E¡¢B¡¢A¡¢F£®
A£®±£³ÖСͰÀïɳ×ÓµÄÖÊÁ¿²»±ä£¬ÔÚС³µÀï¼ÓíÀÂ룬²â³ö¼ÓËÙ¶È£¬Öظ´¼¸´Î
B£®±£³ÖС³µÖÊÁ¿²»±ä£¬¸Ä±äСͰºÍɳ×ÓµÄÖÊÁ¿£¬²â³ö¼ÓËÙ¶È£¬Öظ´¼¸´Î
C£®ÓÃÌìÆ½²â³öС³µºÍСͰ¼°É³×ÓµÄÖÊÁ¿
D£®Æ½ºâĦ²ÁÁ¦£¬Ê¹Ð¡³µ½üËÆ×öÔÈËÙÖ±ÏßÔ˶¯
E£®¹ÒÉÏɳͰ£¬½Óͨ´òµã¼ÆÊ±Æ÷µÄµçÔ´£¬·Å¿ªÐ¡³µ£¬ÔÚÖ½´øÉÏ´òÏÂһϵÁеĵã
F£®¸ù¾Ý²âÁ¿µÄÊý¾Ý£¬·Ö±ð»³öa-FºÍa-1/mµÄͼÏß
£¨2£©±¾ÊÔÑéÖ½´øµÄ¼Ç¼ÈçͼËùʾ£¬´ÓAµãÆðÿ5¸öµãȡһ¸ö¼ÆÊýµã£¬¼´Á½ÏàÁÚ¼ÆÊýµã¼äµÄʱ¼ä¼ä¸ôΪ0.1s£¬ÔòÎïÌåÔ˶¯µÄ¼ÓËÙ¶ÈΪ
3.11
3.11
m/s2£¨±£Áô3λÓÐЧÊý×Ö£©·ÖÎö£º£¨1£©Ã÷ȷʵÑéÔÀí£¬Á˽âʵÑéµÄ¾ßÌå²Ù×÷£¬¶ÔÓÚʵÑé²½ÖèÒªÏȰ²×°Æ÷²Ä£¬ÔÙ½øÐÐʵÑéµÄÂ߼˳Ðò½øÐУ»
£¨2£©ÎïÌå×öÔȼÓËÙÖ±Ïߣ¬ÓÉÖð²î·¨¡÷x=aT2¿ÉÒÔÇó³öÎïÌåÔ˶¯µÄ¼ÓËÙ¶È´óС£®
£¨2£©ÎïÌå×öÔȼÓËÙÖ±Ïߣ¬ÓÉÖð²î·¨¡÷x=aT2¿ÉÒÔÇó³öÎïÌåÔ˶¯µÄ¼ÓËÙ¶È´óС£®
½â´ð£º½â£º£¨1£©¶ÔÓÚʵÑé²½ÖèÒªÏȰ²×°Æ÷²Ä£¬ÔÙ½øÐÐʵÑéµÄÂ߼˳Ðò½øÐУ¬²»Äܵߵ¹Â߼˳Ðò£¬ÒªÓÐÀûÓÚ¼õСʵÑéÎó²î£¬¹ÊÆä˳ÐòΪ£ºC¡¢D¡¢E¡¢A¡¢B¡¢F»òC¡¢D¡¢E¡¢B¡¢A¡¢F£®
¹Ê´ð°¸Îª£ºC¡¢D¡¢E¡¢A¡¢B¡¢F»òC¡¢D¡¢E¡¢B¡¢A¡¢F£®
£¨2£©ÎïÌå×öÔȼÓËÙÖ±Ïߣ¬ÓÉÖð²î·¨¡÷x=aT2µÃ£º
s3-s1=2a1T2
s4-s2=2a2T2
a=
=
=3.11m/s2
¹Ê´ð°¸Îª£º3.11£®
¹Ê´ð°¸Îª£ºC¡¢D¡¢E¡¢A¡¢B¡¢F»òC¡¢D¡¢E¡¢B¡¢A¡¢F£®
£¨2£©ÎïÌå×öÔȼÓËÙÖ±Ïߣ¬ÓÉÖð²î·¨¡÷x=aT2µÃ£º
s3-s1=2a1T2
s4-s2=2a2T2
a=
| a1+a2 |
| 2 |
| (s3+s4)-(s2+s1) |
| 4T2 |
¹Ê´ð°¸Îª£º3.11£®
µãÆÀ£º½â¾öʵÑéÎÊÌâÊ×ÏÈÒªÕÆÎÕ¸ÃʵÑéÔÀí£¬Á˽âʵÑéµÄ²Ù×÷²½ÖèºÍÊý¾Ý´¦ÀíÒÔ¼°×¢ÒâÊÂÏÊìÁ·Ó¦ÓÃÔȱäËÙÖ±ÏßÔ˶¯µÄ¹æÂɼ°ÆäÍÆÂÛ½â¾öÎÊÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿