ÌâÄ¿ÄÚÈÝ
£¨1£©¼×¡¢ÒÒÁ½¿ÅÈÆµØÇò×÷ÔÈËÙÔ²ÖÜÔ˶¯ÈËÔìÎÀÐÇ£¬ÆäÏßËÙ¶È´óС֮±ÈΪ
£º1£¬ÔòÕâÁ½¿ÅÎÀÐǵÄÔËת°ë¾¶Ö®±ÈΪ £¬ÔËתÖÜÆÚÖ®±ÈΪ £®
£¨2£©ÔÚ¹â»¬Ë®Æ½ÃæÉÏÑØxÖáÕý·½Ïò×÷Ö±ÏßÔ˶¯µÄÎïÌåAÖÊÁ¿Îªm1£¬ËÙ¶ÈΪv1=2m/s£»ÁíÒ»¸öÎïÌåBÖÊÁ¿Îªm2£¬ÒÔv2=4m/sµÄËÙÂÊÑØxÖḺ·½ÏòÓÃæÏòAÔ˶¯£¬ÈôÁ½ÎïÌåÏàÅöºóÕ³ÔÚÒ»Æð²¢ÇÒÇ¡ºÃÍ£Ö¹Ô˶¯£¬Ôòm1£ºm2= £»ÈôÁ½ÎïÌåÏàÅöºóÕ³ÔÚÒ»Æð²¢ÒÔv'=1m/sµÄËÙ¶ÈÑØxÖáÕý·½ÏòÔ˶¯£¬Ôòm1£ºm2= £®
| 2 |
£¨2£©ÔÚ¹â»¬Ë®Æ½ÃæÉÏÑØxÖáÕý·½Ïò×÷Ö±ÏßÔ˶¯µÄÎïÌåAÖÊÁ¿Îªm1£¬ËÙ¶ÈΪv1=2m/s£»ÁíÒ»¸öÎïÌåBÖÊÁ¿Îªm2£¬ÒÔv2=4m/sµÄËÙÂÊÑØxÖḺ·½ÏòÓÃæÏòAÔ˶¯£¬ÈôÁ½ÎïÌåÏàÅöºóÕ³ÔÚÒ»Æð²¢ÇÒÇ¡ºÃÍ£Ö¹Ô˶¯£¬Ôòm1£ºm2=
·ÖÎö£º£¨1£©¸ù¾ÝÎÀÐÇÊܵ½µÄÍòÓÐÒýÁ¦µÈÓÚÏòÐÄÁ¦G
=m
=m
r£¬ÁÐʽÇó½â£»
£¨2£©ÒÔA¡¢B×é³ÉµÄϵͳΪÑо¿¶ÔÏó£¬ÔÚˮƽ·½ÏòÔËÓö¯Á¿Êغ㶨ÂÉÁз½³ÌÇó½â£®
| Mm |
| r2 |
| v2 |
| r |
| 4¦Ð2 |
| T2 |
£¨2£©ÒÔA¡¢B×é³ÉµÄϵͳΪÑо¿¶ÔÏó£¬ÔÚˮƽ·½ÏòÔËÓö¯Á¿Êغ㶨ÂÉÁз½³ÌÇó½â£®
½â´ð£º½â£º£¨1£©¸ù¾ÝÍòÓÐÒýÁ¦ÌṩÏòÐÄÁ¦£¬FÍò=FÏò£®
G
=m
=m
r
ËùÒÔ£ºv=
T=2¦Ð
¹Ê£º
=
=
=(
)
=
¹Ê´ð°¸Îª£º1£º2£¬1£º2
£®
£¨2£©ÒÔA¡¢B×é³ÉµÄϵͳΪÑо¿¶ÔÏó£¬
¢ÙÈôÁ½ÎïÌåÏàÅöºóÕ³ÔÚÒ»Æð²¢ÇÒÇ¡ºÃÍ£Ö¹Ô˶¯
ÓÉˮƽ·½ÏòÉ϶¯Á¿ÊغãµÃ
m1v1=m2v2
ËùÒÔ
=
=
=
¢ÚÈôÁ½ÎïÌåÏàÅöºóÕ³ÔÚÒ»Æð²¢ÒÔv'=1m/sµÄËÙ¶ÈÑØxÖáÕý·½ÏòÔ˶¯
ÓÉˮƽ·½ÏòÉ϶¯Á¿ÊغãµÃ
m1v1-m2v2=£¨m1+m2£©v¡ä
ËùÒÔ2m1-4m2=m1+m2
m1=5m2
=
¹Ê´ð°¸Îª£º2£º1£¬5£º1£®
G
| Mm |
| r2 |
| v2 |
| r |
| 4¦Ð2 |
| T2 |
ËùÒÔ£ºv=
|
T=2¦Ð
|
¹Ê£º
| r1 |
| r2 |
| v22 |
| v12 |
| 1 |
| 2 |
| T1 |
| T2 |
| r1 |
| r2 |
| 3 |
| 2 |
| 1 | ||
2
|
¹Ê´ð°¸Îª£º1£º2£¬1£º2
| 2 |
£¨2£©ÒÔA¡¢B×é³ÉµÄϵͳΪÑо¿¶ÔÏó£¬
¢ÙÈôÁ½ÎïÌåÏàÅöºóÕ³ÔÚÒ»Æð²¢ÇÒÇ¡ºÃÍ£Ö¹Ô˶¯
ÓÉˮƽ·½ÏòÉ϶¯Á¿ÊغãµÃ
m1v1=m2v2
ËùÒÔ
| m1 |
| m2 |
| v2 |
| v1 |
| 4 |
| 2 |
| 2 |
| 1 |
¢ÚÈôÁ½ÎïÌåÏàÅöºóÕ³ÔÚÒ»Æð²¢ÒÔv'=1m/sµÄËÙ¶ÈÑØxÖáÕý·½ÏòÔ˶¯
ÓÉˮƽ·½ÏòÉ϶¯Á¿ÊغãµÃ
m1v1-m2v2=£¨m1+m2£©v¡ä
ËùÒÔ2m1-4m2=m1+m2
m1=5m2
| m1 |
| m2 |
| 5 |
| 1 |
¹Ê´ð°¸Îª£º2£º1£¬5£º1£®
µãÆÀ£º±¾Ìâ¹Ø¼üץסϵͳ¶¯Á¿Êغ㣬¸ù¾Ý¶¯Á¿Êغ㶨ÂÉÁÐʽÇó½â£¬µ«ÊÇÒªÖªµÀ¶¯Á¿ÊÇʸÁ¿£¬Òª×¢Òâ·½Ïò£®´ËÌâÊôÓÚÖеµÌ⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿