题目内容

19.如图所示,从倾角为θ的足够长的斜面顶端P以速度v0抛出一个小球,落在斜面上某处Q点,小球落在斜面上的速度与斜面的夹角为α,若把初速度变为2v0,小球仍落在斜面上,则以下说法正确的是(  )
A.夹角α将变大B.夹角α与初速度大小无关
C.小球在空中的运动时间不变D.PQ间距是原来间距的3倍

分析 小球落在斜面上,根据竖直位移与水平位移的关系求出小球在空中的运动时间,从而得出PQ间的变化.结合速度方向与水平方向夹角正切值和位移与水平方向夹角正切值的关系,判断夹角与初速度的关系.

解答 解:根据$tanθ=\frac{\frac{1}{2}g{t}^{2}}{{v}_{0}t}=\frac{gt}{2{v}_{0}}$得,小球在空中运动的时间t=$\frac{2{v}_{0}tanθ}{g}$,因为初速度变为原来的2倍,则小球运动的时间变为原来的2倍.故C错误.
速度与水平方向的夹角的正切值$tanβ=\frac{gt}{{v}_{0}}=2tanθ$,因为θ不变,则速度与水平方向的夹角不变,可知α不变,与初速度无关,故A错误,B正确.
PQ的间距$s=\frac{x}{cosθ}=\frac{{v}_{0}t}{cosθ}=\frac{2{{v}_{0}}^{2}tanθ}{gcosθ}$,初速度变为原来的2倍,则PQ的间距变为原来的4倍,故D错误.
故选:B.

点评 解决本题的关键知道平抛运动在水平方向和竖直方向上的运动规律,知道某时刻速度方向与水平方向夹角正切值是位移与水平方向夹角正切值的2倍这一结论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网