ÌâÄ¿ÄÚÈÝ
ÈçͼËùʾ£¬ÎïÌåA¡¢BÓÉÇᵯ»ÉÏàÁ¬½Ó£¬·ÅÔڹ⻬µÄË®Æ½ÃæÉÏ£¬ÎïÌåAµÄÖÊÁ¿´óÓÚÎïÌåBµÄÖÊÁ¿£®ÎïÌåB×ó²àÓëÊúֱǽ±ÚÏà½Ó´¥£¬µ¯»É±»Ñ¹Ëõ£¬¾ßÓе¯ÐÔÊÆÄÜΪE£®ÊͷźóÎïÌåAÏòÓÒÔ˶¯£¬²¢´ø¶¯ÎïÌåBÀ뿪×ó²àǽ±Ú£®ÎïÌåBÀ뿪ǽ±Úºó£¬¶ÔÓÚA¡¢BºÍµ¯»É×é³ÉµÄϵͳ£¬ÔÚÏòÓÒÔ˶¯µÄ¹ý³ÌÖУ¬ÏÂÁÐ˵·¨£º¢Ùµ¯»ÉÉ쳤×î´óʱµÄµ¯ÐÔÊÆÄܵÈÓÚµ¯»ÉѹËõ×î´óʱµÄµ¯ÐÔÊÆÄÜ£»¢Úµ¯»ÉÉ쳤×î´óʱµÄµ¯ÐÔÊÆÄÜСÓÚµ¯»ÉѹËõ×î´óʱµÄµ¯ÐÔÊÆÄÜ£»¢ÛÎïÌåBµÄ×î´ó¶¯ÄܵÈÓÚE£»¢ÜÎïÌåBµÄ×î´ó¶¯ÄÜСÓÚE£®ÆäÖÐÕýÈ·µÄÊÇ£¨¡¡¡¡£©

| A£®¢Ù¢Û | B£®¢Ù¢Ü | C£®¢Ú¢Û | D£®¢Ú¢Ü |
¢ÙÉèÎïÌåBÀ뿪ǽ±ÚµÄ˲¼äAµÄËÙ¶ÈΪv£¬Ôò¸ù¾ÝϵͳµÄ»úеÄÜÊØºãµÃ£º
E=
mAv2
ÎïÌåBÀ뿪ǽ±Úºó£¬ÏµÍ³µÄ¶¯Á¿Êغ㣬µ±µ¯»ÉÉ쳤×î´óʱºÍѹËõ×î´óʱ£¬Á½ÎïÌåµÄËÙ¶ÈÏàµÈ£¬Ôò
mAv=£¨mA+mB£©v¡ä£¬ÔòÖªÁ½ÖÖ״̬Ï£¬A¡¢B¹²Í¬ËÙ¶ÈÏàͬ£¬¶¯ÄÜÏàͬ£¬Ôò¸ù¾Ý»úеÄÜÊØºãÖª£¬µ¯»ÉÉ쳤×î´óʱµÄµ¯ÐÔÊÆÄܵÈÓÚµ¯»ÉѹËõ×î´óʱµÄµ¯ÐÔÊÆÄÜ£®¹Ê¢ÙÕýÈ·£¬¢Ú´íÎó£®
¢Û¡¢¢Üµ¯»É´ÓBÀ뿪ǽ±Úµ½µÚÒ»´Î»Ö¸´Ô³¤µÄ¹ý³Ì£¬BÒ»Ö±¼ÓËÙ£¬µ¯»ÉµÚÒ»´Î»Ö¸´Ô³¤Ê±BµÄËÙ¶È×î´ó£®
Éè´ËʱA¡¢BµÄËÙ¶È·Ö±ðΪvA¡¢vB£®
¸ù¾Ý¶¯Á¿ÊغãºÍ»úеÄÜÊØºãµÃ£º
mAv=mAvA+mBvB
mAv2=
mA
+
mB
½âµÃ£¬vB=
v
ÎïÌåBµÄ×î´ó¶¯ÄÜΪEkB=
mB
=
mB(
)2v2=
mAv2?
=
E
ÓÉÌâÖª£ºmA£¾mB£¬EkB£¼E£®¹Ê¢Û´íÎ󣬢ÜÕýÈ·£®
¹ÊÑ¡B
E=
| 1 |
| 2 |
ÎïÌåBÀ뿪ǽ±Úºó£¬ÏµÍ³µÄ¶¯Á¿Êغ㣬µ±µ¯»ÉÉ쳤×î´óʱºÍѹËõ×î´óʱ£¬Á½ÎïÌåµÄËÙ¶ÈÏàµÈ£¬Ôò
mAv=£¨mA+mB£©v¡ä£¬ÔòÖªÁ½ÖÖ״̬Ï£¬A¡¢B¹²Í¬ËÙ¶ÈÏàͬ£¬¶¯ÄÜÏàͬ£¬Ôò¸ù¾Ý»úеÄÜÊØºãÖª£¬µ¯»ÉÉ쳤×î´óʱµÄµ¯ÐÔÊÆÄܵÈÓÚµ¯»ÉѹËõ×î´óʱµÄµ¯ÐÔÊÆÄÜ£®¹Ê¢ÙÕýÈ·£¬¢Ú´íÎó£®
¢Û¡¢¢Üµ¯»É´ÓBÀ뿪ǽ±Úµ½µÚÒ»´Î»Ö¸´Ô³¤µÄ¹ý³Ì£¬BÒ»Ö±¼ÓËÙ£¬µ¯»ÉµÚÒ»´Î»Ö¸´Ô³¤Ê±BµÄËÙ¶È×î´ó£®
Éè´ËʱA¡¢BµÄËÙ¶È·Ö±ðΪvA¡¢vB£®
¸ù¾Ý¶¯Á¿ÊغãºÍ»úеÄÜÊØºãµÃ£º
mAv=mAvA+mBvB
| 1 |
| 2 |
| 1 |
| 2 |
| v | 2A |
| 1 |
| 2 |
| v | 2B |
½âµÃ£¬vB=
| 2mA |
| mA+mB |
ÎïÌåBµÄ×î´ó¶¯ÄÜΪEkB=
| 1 |
| 2 |
| v | 2B |
| 1 |
| 2 |
| 2mA |
| mA+mB |
| 1 |
| 2 |
| 4mAmB |
| (mA+mB)2 |
| 4mAmB |
| (mA+mB)2 |
ÓÉÌâÖª£ºmA£¾mB£¬EkB£¼E£®¹Ê¢Û´íÎ󣬢ÜÕýÈ·£®
¹ÊÑ¡B
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿