题目内容

A、B两种放射性元素,原来都静止在同一匀强磁场,磁场方向如图所示,其中一个放出α粒子,另一个放出β粒子,α与β粒子的运动方向跟磁场方向垂直,图中a、b、c、d分别表示α粒子,β粒子以及两个剩余核的运动轨迹(  )
分析:放射性元素的原子核,沿垂直于磁场方向放射出一个粒子,均在洛伦兹力的作用下都做匀速圆周运动.放射性元素放出粒子,动量守恒,由半径公式r=
mv
qB
=
P
qB
,分析α粒子和β粒子与反冲核半径关系,根据洛伦兹力分析运动轨迹是内切圆还是外切圆,判断是哪种衰变.
解答:解:放射性元素放出α粒子时,α粒子与反冲核的速度相反,而电性相同,则两个粒子受到的洛伦兹力方向相反,两个粒子的轨迹应为外切圆.
而放射性元素放出β粒子时,β粒子与反冲核的速度相反,而电性相反,则两个粒子受到的洛伦兹力方向相同,两个粒子的轨迹应为内切圆.
故右图放出的是β粒子,左图放出的是α粒子;
射性元素放出粒子时,两带电粒子的动量守恒.由半径公式r=
mv
qB
=
P
qB
,可得轨迹半径与动量成正比,与电量成反比,而α粒子和β粒子的电量比反冲核的电量小,则α粒子和β粒子的半径比反冲核的半径都大,故b为α粒子的运动轨迹,c为β粒子的运动轨迹;
故选:C.
点评:放射性元素放射后,两带电粒子的动量的矢量和是守恒的,轨迹的半径公式中也有动量的大小,所以可以研究半径与电荷数的关系.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网