ÌâÄ¿ÄÚÈÝ
| A¡¢ÔÚÁ½´Î×÷Óùý³ÌÖУ¬ÎïÌåµÄ¼ÓËٶȵĴóСÏàµÈ | ||||
| B¡¢ÔÚÁ½´Î×÷Óùý³ÌÖУ¬F1+F2£¼F | ||||
| C¡¢ÔÚÁ½´Î×÷Óùý³ÌÖУ¬F1+F2£¾F | ||||
D¡¢ÔÚÁ½´Î×÷Óùý³ÌÖУ¬
|
·ÖÎö£º¶ÔÕûÌå·ÖÎö£¬ÔËÓÃÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³öÕûÌåµÄ¼ÓËÙ¶È£¬¸ôÀë·ÖÎö£¬ÔËÓÃÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³öA¡¢BÖ®¼äµÄÏ໥×÷ÓÃÁ¦£¬´Ó¶ø½øÐзÖÎö£®
½â´ð£º½â£ºA¡¢¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɵã¬ÕûÌåµÄ¼ÓËÙ¶Èa=
=
-¦Ìg£®¿ÉÖªÁ½´Î×÷ÓüÓËٶȵĴóСÏàµÈ£®¹ÊAÕýÈ·£»
B¡¢µ±F×÷ÓÃÔÚ×ó¶ËAÉÏʱ£¬F1-¦Ìm2g=m2a£¬
½âµÃF1=
£®
µ±F×÷ÓÃÔÚÓÒ¶ËBÉÏʱ£¬F2-¦Ìm1g=m1a£¬
½âµÃF2=
¹ÊF1+F2=F£¬
=
£®¹ÊAB¡¢C¡¢D´íÎó£®
¹ÊÑ¡£ºA£®
| F-¦Ì(m1+m2)g |
| m1+m2 |
| F |
| m1+m2 |
B¡¢µ±F×÷ÓÃÔÚ×ó¶ËAÉÏʱ£¬F1-¦Ìm2g=m2a£¬
½âµÃF1=
| m2F |
| m1+m2 |
µ±F×÷ÓÃÔÚÓÒ¶ËBÉÏʱ£¬F2-¦Ìm1g=m1a£¬
½âµÃF2=
| m1F |
| m1+m2 |
¹ÊF1+F2=F£¬
| F1 |
| F2 |
| m2 |
| m1 |
¹ÊÑ¡£ºA£®
µãÆÀ£º½â¾ö±¾ÌâµÄ¹Ø¼üÄܹ»ÕýÈ·µØÊÜÁ¦·ÖÎö£¬ÔËÓÃÅ£¶ÙµÚ¶þ¶¨ÂɽøÐÐÇó½â£¬ÕÆÎÕÕûÌå·¨ºÍ¸ôÀë·¨µÄÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
| A¡¢ÎïÌåBËùÊܵÄĦ²ÁÁ¦·½ÏòÒ»¶¨Ïò×ó | B¡¢ÎïÌåBËùÊܵÄĦ²ÁÁ¦·½Ïò¿ÉÄÜÏò×ó | C¡¢ÎïÌåBËùÊܵÄĦ²ÁÁ¦Ò»¶¨ËæË®Æ½Á¦FµÄÔö´ó¶øÔö´ó | D¡¢Ëæ×ÅˮƽÀÁ¦FµÄÔö´ó£¬AºÍBʼÖÕ¿ÉÒÔ±£³ÖÏà¶Ô¾²Ö¹ |