题目内容

在半径为R的半圆形区域中有一匀强磁场,磁场的方向垂直于纸面,磁感应强度为B.一质量为m,带有电量q的粒子以一定的速度沿垂直于半圆直径AD方向经P点(AP=d)射入磁场(不计重力影响).
(1)如果粒子恰好从A点射出磁场,求入射粒子的速度.
(2)如果粒子经纸面内Q点从磁场中射出,出射方向与半圆在Q点切线方向的夹角为φ(如图).求入射粒子的速度.
精英家教网

精英家教网
(1)由于粒子在P点垂直射入磁场,故圆弧轨道的圆心在AP上,AP是直径.
设入射粒子的速度为v1,由洛伦兹力的表达式和牛顿第二定律得:m
v21
d
2
=qBv1

解得:v1=
qBd
2m

(2)设O′是粒子在磁场中圆弧轨道的圆心,连接O′Q,设O′Q=R′.
由几何关系得:∠OQO′=φ            OO′=R′+R-d
由余弦定理得:(OO/)2=R2+R/2-2RR/cosφ
解得:R/=
d(2R-d)
2[R(1+cosφ)-d]

设入射粒子的速度为v,由m
v2
R/
=qvB

解出:v=
qBd(2R-d)
2m[R(1+cosφ)-d]

答:(1)如果粒子恰好从A点射出磁场,入射粒子的速度为
qBd
2m

(2)如果粒子经纸面内Q点从磁场中射出,出射方向与半圆在Q点切线方向的夹角为φ(如图).入射粒子的速度为
qBd(2R-d)
2m[R(1+cosφ)-d]
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网