ÌâÄ¿ÄÚÈÝ
16£®| A£® | ͨ¹ýR0µçÁ÷µÄÓÐЧֵÊÇ20 A | |
| B£® | ½µÑ¹±äѹÆ÷T2Ô¡¢¸±ÏßȦµÄµçѹ±ÈΪ1£º4 | |
| C£® | Éýѹ±äѹÆ÷T1µÄÊä³öµçѹµÈÓÚ½µÑ¹±äѹÆ÷T2µÄÊäÈëµçѹ | |
| D£® | Éýѹ±äѹÆ÷T1µÄÊä³ö¹¦ÂÊ´óÓÚ½µÑ¹±äѹÆ÷T2µÄÊäÈ빦ÂÊ |
·ÖÎö ¸ù¾ÝµçѹÓëÔÑÊý³ÉÕý±È£¬µçÁ÷ÓëÔÑÊý³É·´±È£¬¿ÉÒÔÇóµÃ½µÑ¹±äѹÆ÷µÄµçÁ÷ºÍÊäµçÏßÉϵĵçÁ÷µÄ´óС£¬´Ó¶ø¿ÉÒÔÇóµÃÊäµçÏߺÍÓõçÆ÷ÏûºÄµÄ¹¦ÂʵĴóС£®
½â´ð ½â£ºA¡¢½µÑ¹±äѹÆ÷¸±ÏßȦÁ½¶Ë½»±äµçѹÓÐЧֵΪ$\frac{220\sqrt{2}}{\sqrt{2}}=220V$£¬¸ºÔصç×èΪ11¦¸£¬ËùÒÔͨ¹ýR0µçÁ÷µÄÓÐЧֵÊÇ$\frac{220}{11}=20A$£¬Ñ¡ÏîAÕýÈ·£»
B¡¢½µÑ¹±äѹÆ÷T2µÄÔ¡¢¸±ÏßȦÔÑÊýÖ®±ÈΪ4£º1£¬¸ù¾ÝµçѹÓëÔÑÊý³ÉÕý±È£¬ËùÒÔÑ¡ÏîB´íÎó£»
C¡¢Éýѹ±äѹÆ÷T1µÄÊä³öµçѹµÈÓÚ½µÑ¹±äѹÆ÷T2µÄÊäÈëµçѹ¼ÓÉÏÊäµçÏßÉϵĵçѹ£¬ËùÒÔÑ¡ÏîC´íÎó£»
D¡¢Éýѹ±äѹÆ÷T1µÄÊä³ö¹¦ÂʵÈÓÚ½µÑ¹±äѹÆ÷T2µÄÊäÈ빦ÂʼÓÉÏÊäµçÏßÉϵŦÂÊ£¬ËùÒÔÑ¡ÏîDÕýÈ·£®
¹ÊÑ¡£ºAD£®
µãÆÀ ÕÆÎÕסÀíÏë±äѹÆ÷µÄµçѹ¡¢µçÁ÷Ö®¼äµÄ¹ØÏµ£¬×î´óÖµºÍÓÐЧֵ֮¼äµÄ¹ØÏµ¼´¿É½â¾ö±¾Ì⣮
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿
6£®Í¼1ËùʾΪһÁмòгºá²¨ÔÚt=0ÃëʱµÄ²¨ÐÎͼ£¬Í¼2ÊÇÕâÁв¨ÖÐPµãµÄÕñ¶¯Í¼Ïߣ¬ÄÇô¸Ã²¨µÄ´«²¥ËٶȺʹ«²¥·½ÏòÊÇ£¨¡¡¡¡£©

| A£® | ¦Ô=0.5m/s£¬ÏòxÖḺ·½Ïò´«²¥ | B£® | ¦Ô=1m/s£¬ÏòxÖḺ·½Ïò´«²¥ | ||
| C£® | ¦Ô=0.5m/s£¬ÏòxÖáÕý·½Ïò´«²¥ | D£® | ¦Ô=1m/s£¬ÏòxÖáÕý·½Ïò´«²¥ |
7£®
ÈçͼÊÇijÊÖ»úµÄ³äµçÆ÷£¬½«Ëü½Óµ½220VµÄÊеçÉÏÄܸøÊÖ»úÌṩ5VµÄ³äµçµçѹ£¬ËµÃ÷¸Ã³äµçÆ÷ÄڵıäѹÆ÷Äܹ»£¨¡¡¡¡£©
| A£® | Éý¸ß½»Á÷µçѹ | B£® | ½µµÍ½»Á÷µçѹ | C£® | Éý¸ßÖ±Á÷µçѹ | D£® | ½µµÍÖ±Á÷µçѹ |
11£®
ÈçͼËùʾ£¬±äѹÆ÷ÊäÈëµçѹUÒ»¶¨£¬Á½¸ö¸±ÏßȦµÄÔÑÊý·Ö±ðΪn2ºÍn3£®µ±°ÑµçÈÈÆ÷½ÓÔÚa¡¢bÉÏ£¬Ê¹c¡¢d¿ÕÔØÊ±£¬Í¨¹ýÔÏßȦÖеĵçÁ÷±íµÄʾÊýÊÇI0£»µ±°ÑͬһµçÈÈÆ÷½ÓÔÚc¡¢dÉÏ£¬Ê¹a¡¢b¿ÕÔØÊ±£¬µçÁ÷±íµÄʾÊýΪI¡ä£¬Ôò$\frac{{I}_{0}}{I¡ä}$Ϊ£¨¡¡¡¡£©
| A£® | n2£ºn3 | B£® | n3£ºn2 | C£® | n22£ºn32 | D£® | n32£ºn22 |
1£®ÏÂÁйØÓÚ¹¦ºÍ¹¦ÂʵÄ˵·¨ÕýÈ·µÄÊÇ£¨¡¡¡¡£©
| A£® | Æû³µÔÚÆ½Ö±¹«Â·ÉÏÐÐʻʱ¸ßµµÎ»Ò»¶¨±ÈµÍµµÎ»ËÙ¶È´ó | |
| B£® | ¾²Ö¹Ôڱ仯´Å³¡ÖеÄÏßȦ²úÉúµÄ¸ÐÓ¦µç¶¯ÊÆÊǸÐÉúµç³¡Á¦×ö¹¦µÄ½á¹û | |
| C£® | µ¼ÌåÇиî´Å¸ÐÏß²úÉú¸ÐÓ¦µç¶¯ÊÆÊÇÒòΪÂåÂ××ÈÁ¦¶ÔÒìÌåÄÚ×ÔÓɵçºÉ×öÕý¹¦ÒýÆðµÄ | |
| D£® | Ò»¶ÔÏ໥×÷ÓõÄĦ²ÁÁ¦µÄ×ܹ¦¿ÉÄÜΪÕý£®Ò²¿ÉÄÜΪ¸º |
8£®ÒÑÖªÐÐÐÇKepler-186fÈÆºãÐÇKepler452×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÆäÖÜÆÚΪT1£»Ä³ÈËÔìÎÀÐÇÔÚÀëµØ¸ß¶ÈµÈÓÚµØÇò°ë¾¶µÄÔ²ÐιìµÀÉÏÈÆµØÇò×öÔÈËÙÔ²ÖÜÔ˶¯£¬ÆäÖÜÆÚΪT2£®ºãÐÇKepler452µÄÖÊÁ¿ÓëµØÇòµÄÖÊÁ¿Ö®±ÈΪp£¬ÐÐÐÇKepler-186fÈÆºãÐÇKepler452Ô˶¯µÄ¹ìµÀ°ë¾¶ÓëµØÇò°ë¾¶Ö®±ÈΪq£¬ÔòT1¡¢T2Ö®±ÈΪ£¨¡¡¡¡£©
| A£® | $\sqrt{\frac{{q}^{3}}{8p}}$ | B£® | $\sqrt{\frac{p}{8{q}^{3}}}$ | C£® | $\sqrt{\frac{{q}^{3}}{p}}$ | D£® | $\sqrt{\frac{p}{{q}^{3}}}$ |
6£®ÏÂÁÐÄÄЩÇé¿öÏ¿ɽ«ÎïÌå¿´³ÉÖʵ㣨¡¡¡¡£©
| A£® | Ñо¿Ä³Ñ§ÉúÆï×ÔÐгµ»Ø¼ÒµÄËÙ¶È | |
| B£® | ¶ÔijѧÉúÆï×ÔÐгµ×ËÊÆ½øÐзÖÎö | |
| C£® | Ñо¿»ðÐÇ̽²âÆ÷´ÓµØÇòµ½»ðÐǵķÉÐÐËÙ¶È | |
| D£® | Ñо¿µØÇòµÄ×Ôת |