题目内容

在空间某点O,向三维空间的各个方向以相同的速度V0同时射出很多个小球,求经过时间t,这些小球离得最远的两个小球之间的距离是______(假设时间t内所有的小球都未与其他物体碰撞).
取小球开始射出从点O自由下落的参考系,则所有小球相对此参考系都做匀速直线运动,经过时间t,所有小球都在以O点球心的球面上,离得最远的两个小球的距离等于球的直径,最远距离为Smax=2v0t.
故答案为:2v0t
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网