题目内容

(2013绵阳一诊)如图所示,传送带的两个轮子半径均为r=0.2m,两个轮子最高点A、B在同一水平面 内,A、B间距离L=5m,半径R=0.4的固定、竖直光滑圆轨道与传送带相切于B点,C 点是圆轨道的最高点。质量m=0.1kg的小滑块与传送带之间的动摩擦因数μ=0.4。重力加速 度 g=10m/s2。求:

(1)传送带静止不动,小滑块以水平速度v0滑上传送带,并能够运动到C点,v0至少多大?

(2)当传送带的轮子以ω=10rad/s的角速度匀速转动时,将小滑块无初速地放到传送带 上的A点,小滑块从A点运动到B点的时间t是多少?

(3) 传送带的轮子以不同的角速度匀速转动,将小滑块无初速地放到  传送带上的A点,小滑块运动到C点时,对圆轨道的压力大小不同,最大压力Fm是多大?

解:(1)设小滑块能够运动到C点,在C点的速度至少为v,则

mg=m················································································· (2分)

mv2mv02=-2mgR-μmgL  ············································· (2分)

解得v0=2m/s  ··································································· (1分)

(3)轮子转动的角速度越大,即传送带运动的速度越大,小滑块在传送带上加速的时间越长,达到B点的速度越大,到C点时对圆轨道的压力就越大。

小滑块在传送带上一直加速,达到B点的速度最大,设为vBm,对应到达C点时的速度为vcm,圆轨道对小滑块的作用力为F,则

vBm2=2aL  ··············································································· (2分)

mvCm2mvBm2=-2mgR   ················································ (2分)

mg+F=m  ········································································ (1分)

Fm=F   ···················································································· (1分)

解得Fm=5N  ············································································ (1分)

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网