ÌâÄ¿ÄÚÈÝ
·ÖÎö£ºµ¯»É³ÓµÄʾÊýµÈÓÚµ¯»ÉµÄÀÁ¦£¬¶ÔÕûÌå·ÖÎö£¬Çó³öÕûÌåµÄ¼ÓËÙ¶È£¬ÔÙ¸ôÀë·ÖÎöÇó³öµ¯»ÉµÄµ¯Á¦£®³·È¥ÀÁ¦µÄ˲¼ä£¬µ¯»ÉµÄµ¯Á¦²»±ä£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨ÂÉÇó³ö˲ʱ¼ÓËٶȵĴóС£®
½â´ð£º½â£ºA¡¢¶ÔÕûÌå·ÖÎö£¬ÕûÌåµÄ¼ÓËÙ¶Èa=
£¬¸ôÀë¶Ôm2·ÖÎö£¬¸ù¾ÝÅ£¶ÙµÚ¶þ¶¨Âɵã¬F-F2=m2a£¬½âµÃF=
£®¹ÊA¡¢B´íÎó£®
C¡¢Í¬Ê±³·È¥F1¡¢F2µÄ˲ʱ£¬µ¯»ÉµÄµ¯Á¦²»±ä£¬Ôòm1¼ÓËٶȵĴóСa1=
=
£®¹ÊCÕýÈ·£®
D¡¢ÔÚ³·È¥Ë®Æ½Á¦F1µÄ˲¼ä£¬m1¼ÓËٶȵĴóСΪa1=
=
£®¹ÊDÕýÈ·£®
¹ÊÑ¡CD£®
| F1-F2 |
| m1+m2 |
| m1F2+m2F1 |
| m1+m2 |
C¡¢Í¬Ê±³·È¥F1¡¢F2µÄ˲ʱ£¬µ¯»ÉµÄµ¯Á¦²»±ä£¬Ôòm1¼ÓËٶȵĴóСa1=
| F |
| m1 |
| m1F2+m2F1 |
| (m1+m2)m1 |
D¡¢ÔÚ³·È¥Ë®Æ½Á¦F1µÄ˲¼ä£¬m1¼ÓËٶȵĴóСΪa1=
| F |
| m1 |
| m1F2+m2F1 |
| (m1+m2)m1 |
¹ÊÑ¡CD£®
µãÆÀ£º½â¾ö±¾ÌâµÄ¹Ø¼üÄܹ»ÕýÈ·µØÊÜÁ¦·ÖÎö£¬ÔËÓÃÅ£¶ÙµÚ¶þ¶¨ÂɽøÐÐÇó½â£¬×¢ÒâÕûÌå·¨ºÍ¸ôÀë·¨µÄÔËÓã®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿