ÌâÄ¿ÄÚÈÝ
ijÐËȤС×éÉè¼ÆÁËÒ»ÖÖʵÑé×°Öã¬ÓÃÀ´Ñо¿ÅöײÎÊÌ⣬ÆäÄ£ÐÍÈçͼËùʾ²»ÓÃÍêÈ«ÏàͬµÄÇáÉþ½«N¸ö´óСÏàͬ¡¢ÖÊÁ¿²»µÈµÄСÇò²¢ÁÐÐü¹ÒÓÚһˮƽ¸Ë¡¢Çò¼äÓÐ΢С¼ä¸ô£¬´Ó×óµ½ÓÒ£¬ÇòµÄ±àºÅÒÀ´ÎΪ1¡¢2¡¢3¡N£¬ÇòµÄÖÊÁ¿ÒÀ´ÎµÝ¼õ£¬Ã¿ÇòÖÊÁ¿ÓëÆäÏàÁÚ×óÇòÖÊÁ¿Ö®±ÈΪk£¨k£¼1£©£®½«1ºÅÇòÏò×óÀÆð£¬È»ºóÓɾ²Ö¹ÊÍ·Å£¬Ê¹ÆäÓë2ºÅÇòÅöײ£¬2ºÅÇòÔÙÓë3ºÅÇòÅöײ¡ËùÓÐÅöײ½ÔΪÎÞ»úеÄÜËðʧµÄÕýÅö£®£¨²»¼Æ¿ÕÆø×èÁ¦£¬ºöÂÔÉþµÄÉ쳤£¬gÈ¡10m/s2£©
£¨1£©ÉèÓën+1ºÅÇòÅöײǰ£¬nºÅÇòµÄËÙ¶ÈΪvn£¬Çón+1ºÅÇòÅöײºóµÄËÙ¶È£®
£¨2£©ÈôN=5£¬ÔÚ1ºÅÇòÏò×óÀ¸ßhµÄÇé¿öÏ£¬ÒªÊ¹5ºÅÇòÅöײºóÉý¸ß16k£¨16hСÓÚÉþ³¤£©ÎÊkֵΪ¶àÉÙ£¿
£¨1£©ÉèÓën+1ºÅÇòÅöײǰ£¬nºÅÇòµÄËÙ¶ÈΪvn£¬Çón+1ºÅÇòÅöײºóµÄËÙ¶È£®
£¨2£©ÈôN=5£¬ÔÚ1ºÅÇòÏò×óÀ¸ßhµÄÇé¿öÏ£¬ÒªÊ¹5ºÅÇòÅöײºóÉý¸ß16k£¨16hСÓÚÉþ³¤£©ÎÊkֵΪ¶àÉÙ£¿
£¨1£©±¾ÌâÖеÄÁ½ÇòÏàÅö£¬¾ù¿É¿´³ÉÊÇ¡°Ò»¾²Ò»¶¯µ¯ÐÔÅöײģÐÍ¡±£®ÒòΪÿ¸öÇòµÄÖÊÁ¿ÒÀ´ÎµÝ¼õ£¬Åöºó²»»á³öÏÖÈëÉäÇò·´µ¯µÄÇé¿ö£®Èç¹ûÈëÉäÇòÖÊÁ¿Îªm1£¬±»ÅöÇòÖÊÁ¿Îªm2£¬Åöǰm1µÄËÙ¶ÈΪv1£¬ÅöºóÁ½ÇòµÄËÙ¶È·Ö±ðΪv1¡ä¡¢v2¡äÓɶ¯Á¿Êغ㶨ÂɺͻúеÄÜÊØºã¶¨Âɵãº
m v1=m1v1¡ä+m2v2¡ä
mV12=
mV¡ä12+
mV¡ä22
µÃ£ºV¡ä1=
V1 V¡ä2=
V1
±¾ÌâÖ÷ÒªÓ¦ÓÃv2¡äµ±nÈ¡´ú1ʱ£¬n+1¾ÍÈ¡´ú2£®
ÉènºÅÇòÖÊÁ¿Îªm£¬Óën+1ºÅÇòÅöײºóµÄËÙ¶È·Ö±ðΪvn¡ä¡¢vn+1¡äȡˮƽÏòÓÒΪÕý·½Ïò£¬¾ÝÌâÒâÓÐnºÅÇòÓën+1ºÅÇòÅöײǰµÄËÙ¶È·Ö±ðΪvn¡¢0¡¢mn+1=kmn
¸ù¾Ý¶¯Á¿Êغ㣬ÓÐmnVn=mnV¡än+kmnV¡än+1¡¢Ù
¸ù¾Ý»úеÄÜÊØºã£¬ÓÐ
mnVn2=
mnV¡än2+
kmnV¡än+12¡¢Ú
Óɢ٢ڵãºV¡än+1=
(V¡än+1=0ÉáÈ¥)¡¢Û
£¨2£©Éè1ºÅÇò°ÚÖÁ×îµÍµãʱµÄËÙ¶ÈΪv1£¬ÓÉ»úеÄÜÊØºã¶¨ÂÉÓУº
m1gh=
m1V12¡¢Ü
v1=
¡¢Ý
ͬÀí¿ÉÇó£¬5ºÅÇòÅöºó˲¼äµÄËÙ¶È
V5=
¡¢Þ
ÓÉ¢Ûʽ¿ÉµÃVn+1= (
)nv1¡¢ß
N=n=5ʱ£¬v5=(
)5V1¡¢à
ÓɢݢޢàÈýʽµÃ£º
k=
-1=0.414¡¢á
´ð£º£¨1£©n+1ºÅÇòÅöײºóµÄËÙ¶ÈV¡än+1=
£¨2£©kֵΪ0.414
m v1=m1v1¡ä+m2v2¡ä
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
µÃ£ºV¡ä1=
| m1-m2 |
| m1+m2 |
| 2 m1 |
| m1+m2 |
±¾ÌâÖ÷ÒªÓ¦ÓÃv2¡äµ±nÈ¡´ú1ʱ£¬n+1¾ÍÈ¡´ú2£®
ÉènºÅÇòÖÊÁ¿Îªm£¬Óën+1ºÅÇòÅöײºóµÄËÙ¶È·Ö±ðΪvn¡ä¡¢vn+1¡äȡˮƽÏòÓÒΪÕý·½Ïò£¬¾ÝÌâÒâÓÐnºÅÇòÓën+1ºÅÇòÅöײǰµÄËÙ¶È·Ö±ðΪvn¡¢0¡¢mn+1=kmn
¸ù¾Ý¶¯Á¿Êغ㣬ÓÐmnVn=mnV¡än+kmnV¡än+1¡¢Ù
¸ù¾Ý»úеÄÜÊØºã£¬ÓÐ
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
Óɢ٢ڵãºV¡än+1=
| 2Vn |
| k+1 |
£¨2£©Éè1ºÅÇò°ÚÖÁ×îµÍµãʱµÄËÙ¶ÈΪv1£¬ÓÉ»úеÄÜÊØºã¶¨ÂÉÓУº
m1gh=
| 1 |
| 2 |
v1=
| 2gh |
ͬÀí¿ÉÇó£¬5ºÅÇòÅöºó˲¼äµÄËÙ¶È
V5=
| 2g¡Á16k |
ÓÉ¢Ûʽ¿ÉµÃVn+1= (
| 2 |
| 1+k |
N=n=5ʱ£¬v5=(
| 2 |
| 1+k |
ÓɢݢޢàÈýʽµÃ£º
k=
| 2 |
´ð£º£¨1£©n+1ºÅÇòÅöײºóµÄËÙ¶ÈV¡än+1=
| 2Vn |
| k+1 |
£¨2£©kֵΪ0.414
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿