ÌâÄ¿ÄÚÈÝ
ÈçͼËùʾΪ¡°ÑéÖ¤ÅöײÖе͝Á¿Êغ㡱µÄʵÑé×°Öã®
£¨1£©ÏÂÁÐ˵·¨·ûºÏ±¾ÊµÑéÒªÇóµÄÊÇ______£®
A£®ÈëÉäÇò±È°ÐÇòÖÊÁ¿´ó»òÕßС¾ù¿É
B£®Ã¿´ÎÈëÉäÇò±ØÐë´Óͬһ¸ß¶ÈÓɾ²Ö¹ÊÍ·Å
C£®°²×°¹ìµÀʱĩ¶ËÇÐÏß±ØÐëˮƽ
D£®ÊµÑéÖÐÐèÒª²âÁ¿¹ìµÀÄ©¶ËÀëµØÃæµÄ¸ß¶È
£¨2£©ÊµÑéÖмǼÁ˹ìµÀÄ©¶ËÔڼǼֽÉϵÄÊúֱͶӰΪOµã£¬¾¶à´ÎÊÍ·ÅÈëÉäÇò£¬ÔڼǼֽÉÏÕÒµ½ÁËÁ½ÇòµÄƽ¾ùÂäµãλÖÃM¡¢P¡¢N£¬²¢²âµÃËüÃǵ½OµãµÄ¾àÀë·Ö±ðΪ
¡¢
ºÍ
£®ÒÑÖªÈëÉäÇòµÄÖÊÁ¿Îªm1£¬°ÐÇòµÄÖÊÁ¿Îªm2£¬Ö»ÒªÑéÖ¤µÈʽ______³ÉÁ¢£¬¼´¿ÉÈÏΪÅöײÖе͝Á¿Êغ㣮
£¨3£©Âú×㣨2£©µÄÇé¿öÏ£¬ÈôÂú×ãµÈʽ______³ÉÁ¢£¬¼´¿ÉÈÏΪÅöײΪµ¯ÐÔÅöײ£®£¨½öÓÃ
¡¢
ºÍ
±íʾ£©

£¨1£©ÏÂÁÐ˵·¨·ûºÏ±¾ÊµÑéÒªÇóµÄÊÇ______£®
A£®ÈëÉäÇò±È°ÐÇòÖÊÁ¿´ó»òÕßС¾ù¿É
B£®Ã¿´ÎÈëÉäÇò±ØÐë´Óͬһ¸ß¶ÈÓɾ²Ö¹ÊÍ·Å
C£®°²×°¹ìµÀʱĩ¶ËÇÐÏß±ØÐëˮƽ
D£®ÊµÑéÖÐÐèÒª²âÁ¿¹ìµÀÄ©¶ËÀëµØÃæµÄ¸ß¶È
£¨2£©ÊµÑéÖмǼÁ˹ìµÀÄ©¶ËÔڼǼֽÉϵÄÊúֱͶӰΪOµã£¬¾¶à´ÎÊÍ·ÅÈëÉäÇò£¬ÔڼǼֽÉÏÕÒµ½ÁËÁ½ÇòµÄƽ¾ùÂäµãλÖÃM¡¢P¡¢N£¬²¢²âµÃËüÃǵ½OµãµÄ¾àÀë·Ö±ðΪ
| . |
| OM |
| . |
| OP |
| . |
| ON |
£¨3£©Âú×㣨2£©µÄÇé¿öÏ£¬ÈôÂú×ãµÈʽ______³ÉÁ¢£¬¼´¿ÉÈÏΪÅöײΪµ¯ÐÔÅöײ£®£¨½öÓÃ
| . |
| OM |
| . |
| OP |
| . |
| ON |
£¨1£©A¡¢Îª·ÀÖ¹Åöºóm1±»·´µ¯£¬ÈëÉäÇòÖÊÁ¿Òª´óÓÚ±»ÅöÇòÖÊÁ¿£¬¼´m1£¾m2£¬¹ÊA´íÎó£»
B¡¢Îª±£Ö¤ÅöײµÄ³õËÙ¶ÈÏàͬ£¬ÈëÉäÇòÿ´Î±ØÐë´Ó¹ìµÀµÄͬһλÖÃÓɾ²Ö¹¹öÏ£¬¹ÊBÕýÈ·£»
C¡¢Îª±£Ö¤Ð¡Çò×öƽÅ×Ô˶¯£¬°²×°¹ìµÀʱĩ¶ËÇÐÏß±ØÐëˮƽ£¬¹ÊCÕýÈ·£»
D¡¢Ð¡Çò×öƽÅ×Ô˶¯µÄʱ¼äÓɸ߶Ȳî¾ö¶¨£¬ÓÉÓڸ߶ȲîÒ»¶¨£¬¹ÊƽÅ×µÄʱ¼ä¶¼Ïàͬ£¬¹ÊˮƽÉä³ÌÓëÆ½Å׵ijõËٶȳÉÕý±È£¬¹Ê²»ÐèÒª²âÁ¿¸ß¶È²î£¬Ö»ÒªÂú×ãm1
=m1
+m2
£¬¾ÍÒ»¶¨ÓÐm1v1+m2v2=m1v1¡ä+m2v2¡ä£¬¹ÊD´íÎó£»
¹ÊÑ¡£ºBC£®
£¨2£©ÊµÑéÒªÑéÖ¤Á½¸öСÇòÅöײǰºó×ܶ¯Á¿Êغ㣬¼´£ºm1v1+m2v2=m1v1¡ä+m2v2¡ä£»
СÇò×öƽÅ×Ô˶¯µÄʱ¼äÓɸ߶Ȳî¾ö¶¨£¬ÓÉÓڸ߶ȲîÒ»¶¨£¬¹ÊƽÅ×µÄʱ¼ä¶¼Ïàͬ£¬¹ÊˮƽÉä³ÌÓëÆ½Å׵ijõËٶȳÉÕý±È£¬¹Ê²»ÐèÒª²âÁ¿¸ß¶È²î£¬Ö»ÒªÂú×㣺m1
=m1
+m2
£»
£¨3£©Ð¡Çò·¢Éúµ¯ÐÔÅöײ£¬Åöײ¹ý³ÌÖÐϵͳ¶¯Á¿Êغ㡢»úеÄÜÒ²ÊØºã£¬¸ù¾ÝÊØºã¶¨ÂÉ£¬ÓУº
m1
=m1
+m2
m1
2=
m1
2+
m2
2
Á½Ê½ÁªÁ¢ÏûÈ¥ÖÊÁ¿¿ÉµÃ£º
2=
2+
?
ÔÙ»¯½âµÃµ½£º
=
+
¹Ê´ð°¸Îª£º£¨1£©BC£»£¨2£©m1
=m1
+m2
£»£¨3£©
=
+
£®
B¡¢Îª±£Ö¤ÅöײµÄ³õËÙ¶ÈÏàͬ£¬ÈëÉäÇòÿ´Î±ØÐë´Ó¹ìµÀµÄͬһλÖÃÓɾ²Ö¹¹öÏ£¬¹ÊBÕýÈ·£»
C¡¢Îª±£Ö¤Ð¡Çò×öƽÅ×Ô˶¯£¬°²×°¹ìµÀʱĩ¶ËÇÐÏß±ØÐëˮƽ£¬¹ÊCÕýÈ·£»
D¡¢Ð¡Çò×öƽÅ×Ô˶¯µÄʱ¼äÓɸ߶Ȳî¾ö¶¨£¬ÓÉÓڸ߶ȲîÒ»¶¨£¬¹ÊƽÅ×µÄʱ¼ä¶¼Ïàͬ£¬¹ÊˮƽÉä³ÌÓëÆ½Å׵ijõËٶȳÉÕý±È£¬¹Ê²»ÐèÒª²âÁ¿¸ß¶È²î£¬Ö»ÒªÂú×ãm1
| . |
| OP |
| . |
| OM |
| . |
| ON |
¹ÊÑ¡£ºBC£®
£¨2£©ÊµÑéÒªÑéÖ¤Á½¸öСÇòÅöײǰºó×ܶ¯Á¿Êغ㣬¼´£ºm1v1+m2v2=m1v1¡ä+m2v2¡ä£»
СÇò×öƽÅ×Ô˶¯µÄʱ¼äÓɸ߶Ȳî¾ö¶¨£¬ÓÉÓڸ߶ȲîÒ»¶¨£¬¹ÊƽÅ×µÄʱ¼ä¶¼Ïàͬ£¬¹ÊˮƽÉä³ÌÓëÆ½Å׵ijõËٶȳÉÕý±È£¬¹Ê²»ÐèÒª²âÁ¿¸ß¶È²î£¬Ö»ÒªÂú×㣺m1
| . |
| OP |
| . |
| OM |
| . |
| ON |
£¨3£©Ð¡Çò·¢Éúµ¯ÐÔÅöײ£¬Åöײ¹ý³ÌÖÐϵͳ¶¯Á¿Êغ㡢»úеÄÜÒ²ÊØºã£¬¸ù¾ÝÊØºã¶¨ÂÉ£¬ÓУº
m1
| . |
| OP |
| . |
| OM |
| . |
| ON |
| 1 |
| 2 |
| . |
| OP |
| 1 |
| 2 |
| . |
| OM |
| 1 |
| 2 |
| . |
| ON |
Á½Ê½ÁªÁ¢ÏûÈ¥ÖÊÁ¿¿ÉµÃ£º
| . |
| OP |
| . |
| OM |
| . |
| ON |
| . |
| MP |
ÔÙ»¯½âµÃµ½£º
| . |
| ON |
| . |
| OP |
| . |
| OM |
¹Ê´ð°¸Îª£º£¨1£©BC£»£¨2£©m1
| . |
| OP |
| . |
| OM |
| . |
| ON |
| . |
| ON |
| . |
| OP |
| . |
| OM |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿