ÌâÄ¿ÄÚÈÝ
ÔÚ¡°ÑéÖ¤»úеÄÜÊØºã¶¨ÂÉ¡±µÄʵÑéÖУ¬ÖÊÁ¿ÎªmµÄÖØ´¸´Ó¸ß´¦Óɾ²Ö¹¿ªÊ¼ÏÂÂ䣬֨´¸ÉÏÍÏ×ŵÄÖ½´øÍ¨¹ý´òµã¼ÆÊ±Æ÷Ëù´ò³öһϵÁеĵ㣬¶ÔÖ½´øÉϵĵ㼣½øÐвâÁ¿¾Í¿ÉÒÔÑéÖ¤»úеÄÜÊØºã¶¨ÂÉ£®
£¨1£©ÈçͼËùʾ£¬Ñ¡È¡Ö½´ø´ò³öµÄÎå¸öÁ¬ÐøµãA¡¢B¡¢C¡¢D¡¢E£¬²â³öAµã¾àÆðʼµãOµÄ¾àÀëΪS0£¬ÆäÓàÈçͼ£¬Ê¹ÓõçÔ´µÄƵÂÊΪf£¨ÆµÂÊΪÖÜÆÚµÄµ¹Êý£©£¬Ôò´òCµãÊ±ÖØïñµÄËÙ¶ÈΪ
£¬´òµã¼ÆÊ±Æ÷ÔÚ´òCµãÊ±ÖØ´¸µÄ¶¯ÄÜΪ
mf2(s1+s2)2
mf2(s1+s2)2£¬´òµã¼ÆÊ±Æ÷ÔÚ´òOµãºÍCµãµÄÕâ¶Îʱ¼äÄÚÖØ´¸ÖØÁ¦ÊÆÄܵļõÉÙÁ¿Îª

£¨2£©ÊµÑéÖз¢ÏÖÖØ´¸¼õÉÙµÄÖØÁ¦ÊÆÄÜÂÔ´óÓÚÖØ´¸Ôö¼ÓµÄ¶¯ÄÜ£¬ÆäÔÒòÖ÷ÒªÊÇÒòΪÔÚÖØ´¸´ø×ÅÖ½´øÏÂÂäµÄ¹ý³ÌÖдæÔÚ×Å×èÁ¦×÷Óã¬ÈôÒÑÖªµ±µØÖØÁ¦¼ÓËٶȵÄֵΪg£¬Óã¨1£©Ð¡Ìâ¼°ÌâÄ¿Öиø³öµÄÒÑÖªÁ¿±íÊ¾ÖØ´¸ÔÚÏÂÂä¹ý³ÌÖÐÊܵ½µÄƽ¾ù×èÁ¦´óСΪ
£¨1£©ÈçͼËùʾ£¬Ñ¡È¡Ö½´ø´ò³öµÄÎå¸öÁ¬ÐøµãA¡¢B¡¢C¡¢D¡¢E£¬²â³öAµã¾àÆðʼµãOµÄ¾àÀëΪS0£¬ÆäÓàÈçͼ£¬Ê¹ÓõçÔ´µÄƵÂÊΪf£¨ÆµÂÊΪÖÜÆÚµÄµ¹Êý£©£¬Ôò´òCµãÊ±ÖØïñµÄËÙ¶ÈΪ
| (s1+s2)f |
| 4 |
| (s1+s2)f |
| 4 |
| 1 |
| 32 |
| 1 |
| 32 |
mg£¨s0+s1£©
mg£¨s0+s1£©
£®£¨2£©ÊµÑéÖз¢ÏÖÖØ´¸¼õÉÙµÄÖØÁ¦ÊÆÄÜÂÔ´óÓÚÖØ´¸Ôö¼ÓµÄ¶¯ÄÜ£¬ÆäÔÒòÖ÷ÒªÊÇÒòΪÔÚÖØ´¸´ø×ÅÖ½´øÏÂÂäµÄ¹ý³ÌÖдæÔÚ×Å×èÁ¦×÷Óã¬ÈôÒÑÖªµ±µØÖØÁ¦¼ÓËٶȵÄֵΪg£¬Óã¨1£©Ð¡Ìâ¼°ÌâÄ¿Öиø³öµÄÒÑÖªÁ¿±íÊ¾ÖØ´¸ÔÚÏÂÂä¹ý³ÌÖÐÊܵ½µÄƽ¾ù×èÁ¦´óСΪ
mg-
mf2
| 1 |
| 32 |
| (s1+s2)2 |
| s0+s1 |
mg-
mf2
£®| 1 |
| 32 |
| (s1+s2)2 |
| s0+s1 |
·ÖÎö£º½â¾öʵÑéÎÊÌâÊ×ÏÈÒªÕÆÎÕ¸ÃʵÑéÔÀí£¬Á˽âʵÑéµÄÒÇÆ÷¡¢²Ù×÷²½ÖèºÍÊý¾Ý´¦ÀíÒÔ¼°×¢ÒâÊÂÏ
ÖªµÀµçÔ´µÄƵÂÊΪf£¬¼´¿ÉÇó³ö´òµãÖÜÆÚ£®
Ö½´ø·¨ÊµÑéÖУ¬ÈôÖ½´øÔȱäËÙÖ±ÏßÔ˶¯£¬²âµÃÖ½´øÉϵĵã¼ä¾à£¬ÀûÓÃÔȱäËÙÖ±ÏßÔ˶¯µÄÍÆÂÛ£¬¿É¼ÆËã³ö´ò³öijµãʱֽ´øÔ˶¯µÄ˲ʱËٶȺͼÓËÙ¶È£¬´Ó¶øÇó³ö¶¯ÄÜ£®¸ù¾Ý¹¦ÄܹØÏµµÃÖØÁ¦ÊÆÄܼõСÁ¿µÈÓÚÖØÁ¦×ö¹¦µÄÊýÖµ£®
ÔÚÖØÁ¦ÊÆÄܼõСÁ¿ºÍ¶¯ÄÜÔö¼ÓÁ¿ÒÑÖªµÄÇé¿öÏ£¬ÎÒÃÇÓ¦¸ÃÔËÓö¯Äܶ¨ÀíÇó³ö×èÁ¦´óС£®
¶ÔÓÚ×ÖĸÔËËãҪϸÐÄ£®
ÖªµÀµçÔ´µÄƵÂÊΪf£¬¼´¿ÉÇó³ö´òµãÖÜÆÚ£®
Ö½´ø·¨ÊµÑéÖУ¬ÈôÖ½´øÔȱäËÙÖ±ÏßÔ˶¯£¬²âµÃÖ½´øÉϵĵã¼ä¾à£¬ÀûÓÃÔȱäËÙÖ±ÏßÔ˶¯µÄÍÆÂÛ£¬¿É¼ÆËã³ö´ò³öijµãʱֽ´øÔ˶¯µÄ˲ʱËٶȺͼÓËÙ¶È£¬´Ó¶øÇó³ö¶¯ÄÜ£®¸ù¾Ý¹¦ÄܹØÏµµÃÖØÁ¦ÊÆÄܼõСÁ¿µÈÓÚÖØÁ¦×ö¹¦µÄÊýÖµ£®
ÔÚÖØÁ¦ÊÆÄܼõСÁ¿ºÍ¶¯ÄÜÔö¼ÓÁ¿ÒÑÖªµÄÇé¿öÏ£¬ÎÒÃÇÓ¦¸ÃÔËÓö¯Äܶ¨ÀíÇó³ö×èÁ¦´óС£®
¶ÔÓÚ×ÖĸÔËËãҪϸÐÄ£®
½â´ð£º½â£º£¨1£©ÀûÓÃÔȱäËÙÖ±ÏßÔ˶¯µÄÍÆÂÛ
vC=
=
=
¸ù¾Ý¶¯Äܶ¨ÒåʽµÃ£º
´òCµãÊ±ÖØ´¸µÄ¶¯ÄÜΪEkC=
mvC2=
mf2(s1+s2) 2
ÖØ´¸¶¯ÄܵÄÔö¼ÓÁ¿Îª¡÷EK=EkC-0=
mf2(s1+s2) 2
ÖØÁ¦ÊÆÄܼõСÁ¿¡÷Ep=mgh=mg£¨s0+s1£©
£¨2£©ÖØÎïÏÂÂä¹ý³ÌÖÐÊÜÖØÁ¦mgºÍ×èÁ¦f£¬
¸ù¾Ý¶¯Äܶ¨ÀíÑо¿ÖØÎï´Ó0µ½CµÃ£º
wºÏ=¡÷Ek £¨ÆäÖÐÖØÁ¦×öÕý¹¦£¬×èÁ¦×ö¸º¹¦£©
mgh-fh=EkC-0
f=mg-
=mg-
mf2
¹Ê´ð°¸Îª£º
£¨1£©
£¬
mf2(s1+s2) 2£¬mg£¨s0+s1£©
£¨2£©mg-
mf2
vC=
| xAE |
| tAE |
| s1+s2 |
| 4T |
| (s1+s2)f |
| 4 |
¸ù¾Ý¶¯Äܶ¨ÒåʽµÃ£º
´òCµãÊ±ÖØ´¸µÄ¶¯ÄÜΪEkC=
| 1 |
| 2 |
| 1 |
| 32 |
ÖØ´¸¶¯ÄܵÄÔö¼ÓÁ¿Îª¡÷EK=EkC-0=
| 1 |
| 32 |
ÖØÁ¦ÊÆÄܼõСÁ¿¡÷Ep=mgh=mg£¨s0+s1£©
£¨2£©ÖØÎïÏÂÂä¹ý³ÌÖÐÊÜÖØÁ¦mgºÍ×èÁ¦f£¬
¸ù¾Ý¶¯Äܶ¨ÀíÑо¿ÖØÎï´Ó0µ½CµÃ£º
wºÏ=¡÷Ek £¨ÆäÖÐÖØÁ¦×öÕý¹¦£¬×èÁ¦×ö¸º¹¦£©
mgh-fh=EkC-0
f=mg-
| EKC |
| h |
| 1 |
| 32 |
| (s1+s2)2 |
| s0+s1 |
¹Ê´ð°¸Îª£º
£¨1£©
| (s1+s2)f |
| 4 |
| 1 |
| 32 |
£¨2£©mg-
| 1 |
| 32 |
| (s1+s2)2 |
| s0+s1 |
µãÆÀ£ºÖ½´øÎÊÌâµÄ´¦ÀíÊÇÁ¦Ñ§ÊµÑéÖг£¼ûµÄÎÊÌ⣮ÎÒÃÇ¿ÉÒÔÖ½´ø·¨ÊµÑéÖУ¬ÈôÖ½´øÔȱäËÙÖ±ÏßÔ˶¯£¬²âµÃÖ½´øÉϵĵã¼ä¾à£¬ÀûÓÃÔȱäËÙÖ±ÏßÔ˶¯µÄÍÆÂÛ£¬¿É¼ÆËã³ö´ò³öijµãʱֽ´øÔ˶¯µÄ˲ʱËٶȺͼÓËÙ¶È£®
¶¯Äܶ¨ÀíµÄÓ¦Ó÷¶Î§ºÜ¹ã£¬ÔÚ±¾ÌâÖÐÇó³öƽ¾ù×èÁ¦£®
¶¯Äܶ¨ÀíµÄÓ¦Ó÷¶Î§ºÜ¹ã£¬ÔÚ±¾ÌâÖÐÇó³öƽ¾ù×èÁ¦£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿